- 无标题文档
查看论文信息

中文题名:

 基于卷积神经网络的高分辨率遥感影像变化检测研究    

姓名:

 吴纹辉    

学号:

 0000323839    

论文语种:

 中文    

学科名称:

 工学 - 测绘科学与技术 - 摄影测量与遥感    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 地球科学与环境工程学院    

专业:

 测绘科学与技术    

第一导师姓名:

 李志林    

第一导师单位:

 西南交通大学    

第二导师姓名:

 慎利    

第二导师单位:

 西南交通大学    

完成日期:

 2020-12-29    

答辩日期:

 2020-08-29    

外文题名:

 HIGH RESOLUTION REMOTE SENSING IMAGE CHANGE DETECTION BASED ON CONVOLUTIONAL NEURAL NETWORK    

中文关键词:

 高分辨率遥感影像变化检测 ; 特征相关性网络 ; 语义分割 ; 实例分割 ; 边缘感知网络    

外文关键词:

 High resolution remote sensing image change detection ; Spatio-temporal correlation modeling ; Semantic segmentation ; Instance segmentation ; Edge sensing network    

中文摘要:

遥感影像变化检测在土地利用与覆盖变化监测、城市发展变化研究、环境监测和灾害评估等领域具有很强的理论意义和应用价值,一直是国内外学者关注的热点领域。然而,随着影像空间分辨率的提高,高分辨率遥感影像呈现出大量的新特点,如空间特征丰富、地物目标多尺度化等,而传统的遥感影像变化检测方法受限于人为设计特征的表达能力,在高分辨率遥感影像变化检测上的精度仍有待提高。
近年来,由于在深度特征提取能力上的优势,以卷积神经网络为代表的深度学习技术在图像处理领域展现出了巨大的潜力。但是,遥感影像变化检测任务具有其特殊性,其关注的是同一地区不同时相影像间的变化信息,所以需要建模影像间的时空相关性以突出变化信息。因此,本文首先在建模影像间时空相关性的基础上,从基于像素和基于对象的角度,开展了基于语义分割模型和基于实例分割模型的高分辨率遥感影像变化检测方法研究,并进一步探讨基于卷积神经网络的端到端变化检测模型设计,以期在高分辨率遥感影像变化检测任务中实现较高的精度和较好的边缘保持效果。本文的主要工作和结论总结如下:
(1) 提出特征相关性网络组件,以构建影像间的时空相关性。本文通过在典型的语义分割模U-Net和实例分割模型Mask R-CNN上添加一个能够建模时空相关性的简单组件,并结合孪生网络,使这些模型能够适用于解决遥感影像变化检测问题。进一步地,在总结U-Net和Mask R-CNN的特点之后,提出特征相关性网络,其包含相关性计算和多层次特征融合两个步骤,旨在合理地构建影像间的时空相关性。最后讨论了相关性计算的多种实现方式,实验表明,一种简单的无参数相关性计算方法就可以实现较好的效果。
(2) 不同语义分割模型下的高分辨率遥感影像变化检测研究,旨在从基于像素的角度理解语义分割背景下的高分辨率遥感影像变化检测任务。在具体实现上,根据特征相关性网络的思路,将三个经典的语义分割模型 (SemanticFPN、DeepLabv3和DeepLabv3+) 修改为变化检测模型,并进行相关实验,根据实验结果进行了详细的定量和定性分析,最后对比分析了不同的基于语义分割模型 (U-Net、SemanticFPN、DeepLabv3和DeepLabv3+) 的变化检测模型的优缺点。根据实验结果和对比分析,对于基于语义分割模型的变化检测模型的网络架构设计和性能,可以得出以下重要的结论:1) 多层次特征融合能够提升模型的性能,并且利用的特征提取器中的层次特征越多,模型的性能和泛化能力越好,这也证明了特征相关性网络中的多层次特征融合的必要性;2) 基于语义分割模型的变化检测模型对于边缘的预测效果离理想结果还有一定距离,尤其是对于密集的变化区域,这些模型很容易将多个变化区域预测成一个变化区域,这说明模型的边缘预测能力还有待提升。
(3) 不同实例分割模型下的高分辨率遥感影像变化检测研究,旨在从基于对象的角度理解实例分割背景下的高分辨率遥感影像变化检测任务。在具体实现上,根据特征相关性网络的思路,将两个典型的实例分割模型 (BlendMask和CenterMask) 修改为变化检测模型,并进行相关实验,然后根据实验结果进行了详细的定量和定性分析,最后对比分析了基于实例分割模型 (Mask R-CNN、BlendMask和CenterMask) 的变化检测模型和基于语义分割模型 (U-Net、SemanticFPN、DeepLabv3和DeepLabv3+) 的变化检测模型的优缺点。根据实验结果和对比分析,可以得出基于实例分割模型的变化检测模型和基于语义分割模型的变化检测模型的主要区别是:基于实例分割模型的变化检测模型是对图片的子区域进行分割,而基于语义分割模型的变化检测模型是对图片的整个区域进行分割,所以,基于实例分割模型的变化检测模型相对于基于语义分割模型的变化检测模型而言,更擅长于将密集变化区域的边界分开,却容易将一个大型的变化区域分割成多个小型的变化区域,而基于语义分割模型的变化检测模型正好相反。
(4) 针对基于卷积神经网络的变化检测模型对于变化边缘预测不够准确的问题,提出边缘感知网络。边缘感知网络由主干网、粗预测分支和精预测分支三部分组成,主干网用于多层次相关性特征的提取;粗预测分支用于多层次特征图的融合,以建模变化区域内部语义信息的一致性;精预测分支用于多层次特征点的融合,以尽可能保留边缘细节信息。在航空影像和卫星影像的建筑物变化检测数据集上的实验表明,相较于其它方法,边缘感知网络既能够取得最优的变化检测精度,也能够有效地保留边界的细节信息。

外文摘要:

Remote sensing image change detection has strong theoretical significance and application value in the fields of land use and cover change monitoring, urban development and change research, environmental monitoring and disaster assessment, etc., and has always been a hot field of concern for scholars at home and abroad. However, with the improvement of image spatial resolution, high resolution remote sensing images show a lot of new characteristics, such as rich spatial features and object multiscaling, etc., and the traditional remote sensing image change detection method is limited by artificial design characteristics of the power of expression, on the high-resolution remote sensing image change detection accuracy remains to be improved.
In recent years, due to its advantages in deep feature extraction, deep learning technology represented by the convolutional neural networks has shown great potential in the field of image processing. However, the task of remote sensing image change detection has its particularity, which focuses on the change information between images of different times in the same region, so the spatio-temporal correlation between images needs to be modeled to highlight the change information. Therefore, this thesis based on the modeling spatio-temporal correlation between images, from the perspective of based on pixel and based on the object, carried out research based on semantic segmentation models and instance segmentation models of high-resolution remote sensing image change detection method, and further explore the end-to-end change detection network architecture design based on convolution neural network, to achieve higher accuracy and better edge result in high-resolution remote sensing image change detection task. The main work and conclusions of this thesis are summarized as follows:
(1) A feature correlation network is proposed to construct the spatio-temporal correlation between images. In this section, a simple component that can model the temporal and spatial correlation is added to the existing typical semantic segmentation model (U-Net) and the instance segmentation model (Mask R-CNN), and combined with the siamese network, so that these models can be applied to solve the problem of remote sensing image change detection. After summarizing the characteristics of U-Net and Mask R-CNN, the Feature Correlation Network (FCoN) is proposed. The FCoN includes two steps of correlation calculation and multi-level feature fusion, which aims to effectively construct the spatio-temporal correlation between images. In the end, we discuss several ways of correlation calculation, and the experiment shows that a simple parameterless correlation calculation method already achieves excellent results.
(2) The study on high-resolution remote sensing image change detection under different semantic segmentation models aims to understand the task of high-resolution remote sensing image change detection under semantic segmentation background from the perspective of pixel-based. Specifically, according to the design of FCoN, the three classical semantic segmentation models (SemanticFPN, DeepLabv3, and DeepLabv3+) are modified to change detection models, and relevant experiments were carried out. According to the experimental results, a detailed quantitative and qualitative analysis was conducted, and the advantages and disadvantages of these models are also analyzed. According to the experimental results and comparative analysis, for change detection model’s network architecture design and performance based on semantic segmentation, we can draw the following conclusions: 1) Multi-level feature fusion can improve the performance of the model, and the more hierarchical features in the feature extractor, the better the performance and generalization ability of the model, which also proves the necessity of multi-level feature fusion in the FCoN; 2) The prediction of the selected typical semantic segmentation model on the edge is still far from the ideal result. Especially for the dense change area, these models are easy to predict the change area of multiple areas into a area, which indicates that the edge prediction ability of the model needs to be improved.
(3) The study on high-resolution remote sensing image change detection under different instance segmentation models aims to understand the task of high-resolution remote sensing image change detection under the background of instance segmentation from the object-based perspective. Specifically, according to the idea of FCoN, the two typical instance segmentation models (BlendMask and CenterMask) are modified into change detection models, and relevant experiments were carried out. According to the experimental results, a detailed quantitative and qualitative analysis was conducted. Finally, the advantages and disadvantages of the change detection model based on instance segmentation model (Mask R-CNN, BlendMask, and CenterMask) and the change detection model based on semantic segmentation models (U-Net, SemanticFPN, DeepLabv3, and DeepLabv3+) were compared and analyzed. According to the experimental results and comparative analysis, the main differences between the change detection method based on the instance segmentation and the change detection model based on semantic segmentation are as follows: The change detection models based on instance segmentation are to segment the sub-region of the image, while the change detection model based on semantic segmentation are to segment the entire region of the image, therefore, the change detection models based on instance segmentation, are better at separating the dense change areas, but is easier to divide a large area into multiple areas, and change detection models based on semantic segmentation are just the opposite.
(4) The Edge Sensing Network (ESNet) is proposed to obtain better change detection accuracy and effectively retain the detailed information of the edge. ESNet is composed of a backbone, coarse prediction branch, and fine prediction branch. The backbone is used to extract multi-level correlation features. The coarse prediction branch is used for the fusion of multi-level feature maps to model the consistency of change object's inner. The fine prediction branch is used for the fusion of multi-level feature points to retain edge details as much as possible. Compared with other methods, the ESNet can not only obtain the optimal change detection accuracy but also effectively retain the detailed information of the edge.

分类号:

 P237    

总页码:

 103    

参考文献总数:

 99    

参考文献:

公茂果,苏临之,李豪,等. 合成孔径雷达影像变化检测研究进展[J].计算机研究与发展,2016,53 (01):123-137.

眭海刚,冯文卿,李文卓,等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报 (信息科学版) , 2018, 043 (012):1885-1898.

何鹏飞. 基于不确定性分析的遥感影像变化检测方法研究[D]. 中国矿业大学,2017.

李德仁,童庆禧,李荣兴,等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学:地球科学, 2012 (06):15-23.

孙家抦. 遥感原理与应用 (第3版) [M]. 武汉大学出版社, 2013.

杨磊. 基于多特征Dempster-shafer证据融合的高分辨率遥感影像建筑物变化检测[D]. 西南交通大学,2016.

张良培,武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报,2017,46 (10):1447-1459.

郑东玉. 多尺度分割框架下的面向对象高分辨率遥感影像变化检测[D]. 西南交通大学,2018.

周启鸣. 多时相遥感影像变化检测综述[J]. 地理信息世界, 2011, 09 (002):28-33.

Bazi Y, Bruzzone L, Melgani F. Image thresholding based on the EM algorithm and the generalized Gaussian distribution[J]. Pattern Recognition, 2007, 40 (2): 619-634.

Bolya D, Zhou C, Xiao F, et al. Yolact: Real-time instance segmentation[C]//Proceedings of the IEEE international conference on computer vision. 2019: 9157-9166.

Bovolo F, Bruzzone L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 45 (1): 218-236.

Bruzzone L, Prieto D F. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images[J]. IEEE Transactions on image processing, 2002, 11 (4): 452-466.

Canty M J, Nielsen A A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation[J]. Remote Sensing of Environment, 2008, 112 (3): 1025-1036.

Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4): 772-776.

Chen G, Hay G J, Carvalho L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33 (14): 4434-4457.

Chen H, Shi Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection[J]. Remote Sensing, 2020, 12 (10): 1662.

Chen H, Sun K, Tian Z, et al. BlendMask: Top-down meets bottom-up for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 8573-8581.

Chen J, Gong P, He C, et al. Land-use/land-cover change detection using improved change-vector analysis[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69 (4): 369-379.

Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40 (4): 834-848.

Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.

Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision. 2018: 801-818.

Chollet F. Deep Learning with Python[M]. Manning Publications Co., 2018. 17-18.

Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.

Dai X, Khorram S. The effects of image misregistration on the accuracy of remotely sensed change detection[J]. IEEE Transactions on Geoscience and Remote sensing, 1998, 36 (5): 1566-1577.

Daudt R C, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection[C]//2018 25th IEEE International Conference on Image Processing. IEEE, 2018: 4063-4067.

Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009: 248-255.

Deng J, Wang K, Deng Y H, et al. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data[J]. Journal of remote sensing, 2008, 29 (16): 4823-4838.

Fang B, Chen G, Pan L, et al. GAN-Based siamese Framework for Landslide Inventory Mapping Using Bi-Temporal Optical Remote Sensing Images[J]. IEEE Geoscience and Remote Sensing Letters, 2020.

Feng W, Sui H, Tu J, et al. A novel change detection approach based on visual saliency and random forest from multi-temporal high-resolution remote-sensing images[J]. International Journal of Remote Sensing, 2018, 39 (22): 7998-8021.

Ghosh A, Mishra N S, Ghosh S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images[J]. Information Sciences, 2011, 181 (4): 699-715.

Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.

Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.

Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018: 354-377.

Hafiz A M, Bhat G M. A survey on instance segmentation: state of the art[J]. International Journal of Multimedia Information Retrieval, 2020: 1-19.

Hansen M C, Loveland T R. A review of large area monitoring of land cover change using Landsat data[J]. Remote sensing of Environment, 2012, 122: 66-74.

Hao S, Zhou Y, Guo Y. A Brief Survey on Semantic Segmentation with Deep Learning[J]. Neurocomputing, 2020.

He K, Girshick R, Dollár P. Rethinking imagenet pre-training[C]//Proceedings of the IEEE international conference on computer vision. 2019: 4918-4927.

He K, Gkioxari G, Dollar P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37 (9): 1904-1916.

Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9 (8): 1735-1780.

Huang X, Cao Y, Li J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images[J]. Remote Sensing of Environment, 2020, 244: 111802.

Huang Z, Huang L, Gong Y, et al. Mask scoring r-cnn[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2019: 6409-6418.

Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of photogrammetry and remote sensing, 2013, 80: 91-106.

Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]//International Conference on Machine Learning. 2015: 448-456.

Ji M, Liu L, Du R, et al. A comparative study of texture and convolutional neural network features for detecting collapsed buildings after earthquakes using pre-and post-event satellite imagery[J]. Remote Sensing, 2019, 11 (10): 1202.

Ji S, Wei S, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57 (1): 574-586.

Jiang H, Hu X, Li K, et al. PGA-SiamNet: Pyramid Feature-Based Attention-Guided siamese Network for Remote Sensing Orthoimagery Building Change Detection[J]. Remote Sensing, 2020, 12 (3): 484.

Johnson R D, Kasischke E S. Change vector analysis: A technique for the multispectral monitoring of land cover and condition[J]. International Journal of Remote Sensing, 1998, 19 (3): 411-426.

Kirillov A, Girshick R, He K, et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 6399-6408.

Kirillov A, Wu Y, He K, et al. Pointrend: Image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9799-9808.

Lambin E F, Strahlers A H. Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data[J]. Remote sensing of environment, 1994, 48 (2): 231-244.

Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision. 2018: 734-750.

LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521 (7553): 436-444.

Lee Y, Park J. CenterMask: Real-time anchor-free instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 13906-13915.

Lei T, Zhang Y, Lv Z, et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (6): 982-986.

Li H, Xiao P, Feng X, et al. Using land long-term data records to map land cover changes in China over 1981–2010[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (4): 1372-1389.

Li L, Li X, Zhang Y, et al. Change detection for high-resolution remote sensing imagery using object-oriented change vector analysis method[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016: 2873-2876.

Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.

Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//European conference on computer vision. Springer, Cham, 2014: 740-755.

Liu J, Gong M, Qin K, et al. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images[J]. IEEE Transactions on Neural Networks, 2018, 29 (3): 545-559.

Lu X, Wang W, Ma C, et al. See more, know more: Unsupervised video object segmentation with co-attention siamese networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2019: 3623-3632.

Malila W A. Change vector analysis: an approach for detecting forest changes with Landsat[C]//LARS symposia. 1980: 385.

Mitchell D P, Netravali A N. Reconstruction filters in computer-graphics[J]. ACM Siggraph Computer Graphics, 1988, 22 (4): 221-228.

Nielsen A A, Conradsen K, Simpson J J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64 (1): 1-19.

Nielsen A A. The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data[J]. IEEE Transactions on Image processing, 2007, 16 (2): 463-478.

Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 1 (10): e3.

Papadomanolaki M, Verma S, Vakalopoulou M, et al. Detecting urban changes with recurrent neural networks from multitemporal Sentinel-2 data[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 214-217.

Peng D, Zhang Y, Guan H. End-to-end change detection for high resolution satellite images using improved unet++[J]. Remote Sensing, 2019, 11 (11): 1382.

Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.

Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.

Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.

Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 (6): 1137-1149.

Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 658-666

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.

Saha S, Bovolo F, Bruzzone L. Unsupervised deep change vector analysis for multiple-change detection in VHR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (6): 3677-3693.

Shi W, Zhang M, Zhang R, et al. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges[J]. Remote Sensing, 2020, 12 (10): 1688.

Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]//Advances in neural information processing systems. 2015: 802-810.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

Singh A. Review Article Digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10 (6):989-1003.

Song C, Woodcock C E, Seto K C, et al. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? [J]. Remote sensing of Environment, 2001, 75 (2): 230-244.

Thonfeld F, Feilhauer H, Braun M, et al. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50: 131-140.

Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE international conference on computer vision. 2019: 9627-9636.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.

Volpi M, Tuia D, Bovolo F, et al. Supervised change detection in VHR images using contextual information and support vector machines[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20: 77-85.

Wang J, Shen L, Qiao W, et al. Deep feature fusion with integration of residual connection and attention model for classification of VHR remote sensing images[J]. Remote Sensing, 2019, 11 (13): 1617.

Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7794-7803.

Wang X, Kong T, Shen C, et al. Solo: Segmenting objects by locations[J]. arXiv preprint arXiv:1912.04488, 2019.

Wu C, Du B, Zhang L. Slow Feature Analysis for Change Detection in Multispectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (5): 2858-2874.

Xu Q, Liu Z, Li F, et al. The regularized iteratively reweighted object-based MAD method for change detection in bi-temporal, multispectral data[C]//Hyperspectral Remote Sensing Applications and Environmental Monitoring and Safety Testing Technology. International Society for Optics and Photonics, 2016, 10156: 101560P.

Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 4353-4361.

Zhan Y, Fu K, Yan M, et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (10): 1845-1849.

Zhang C, Yue P, Tapete D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200.

Zhang L, Wu C, Du B. Automatic radiometric normalization for multitemporal remote sensing imagery with iterative slow feature analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (10): 6141-6155.

Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.

Zhou X, Wang D, Krähenbühl P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019.

Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE transactions on medical imaging, 2019, 39 (6): 1856-1867.

馆藏位置:

 P237 S 2020    

开放日期:

 2021-01-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式