- 无标题文档
查看论文信息

中文题名:

 超/特高压直流接地极线路电弧特性及熄弧方法    

姓名:

 刘益岑    

一卡通号:

 0000246096    

论文语种:

 中文    

学科名称:

 工学 - 电气工程    

公开时间:

 公开    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西南交通大学    

院系:

 电气工程学院    

专业:

 电气工程    

第一导师姓名:

 吴广宁    

第一导师单位:

 西南交通大学    

完成日期:

 2022-11-15    

答辩日期:

 2022-11-11    

外文题名:

 The Arc Characteristics and Extinguishing Method of the EHV/UHV DC Grounding Electrode Lines    

中文关键词:

 接地极线路 ; 直流电弧 ; 电气特性 ; 运动特性 ; 熄弧方法    

外文关键词:

 Grounding electrode line ; DC arc ; Electrical characteristics ; Motion characteristics ; Arc extinguishing method    

中文摘要:

近年来,超特高压直流输电技术得到快速发展,在跨区域电网间的互联与大容量远距离输电等场景获得广泛应用。接地极线路是超/特高压直流输电系统的重要组成部分,是直流系统不平衡电流和大地回流的入地通道,具有承载电流大、线路电压低的特点,其外绝缘配置较低,易遭受雷电和操作过电压的影响。招弧角包括一对并联安装于绝缘子串两端的电极,电极形成的间隙长度略小于绝缘子串长度,当接地极线路遭受过电压冲击时,先于绝缘子串击穿,从而起到保护绝缘子串进而保护接地极线路的作用,对保证超/特高压直流输电系统安全可靠运行具有重要意义。招弧角击穿引发的接地极线路直流电弧具有电流幅值大、燃烧时间长、难以熄灭的特点,我国已多次发生直流电弧导致的接地极线路掉串、断线事故,甚至引发直流系统闭锁停运,造成国民经济重大损失。处于户外开放空间下的接地极线路直流电弧受电极型式、环境等因素影响,其燃弧过程极为复杂。如能在招弧角间隙击穿产生电弧时,及时将其转移至电极端部,从而避免对绝缘子的破坏,并创造有利条件,使其快速熄弧,不但可以减少接地极线路因无法及时有效熄弧导致的故障或停运,保证电力的持续输送,而且可有效保障直流系统的稳定运行,防止发生更大电力系统事故。因此,有必要深入理解接地极线路直流电弧电气特性、运动特性,掌握其内在物理机制,为进一步研究可靠性高、经济性好的直流电弧熄弧方法提供理论依据。为研究直流电弧热、电、磁、力等物理场分布特性,本文建立了电弧磁流体动力学模型,实现了直流电弧各物理场和运动状态的耦合。进一步建立了百千瓦容量接地极线路直流电弧模拟试验平台,可以清晰捕获电弧形态,也可以获取直流电弧电流、电压等电气参数,为研究直流电弧电气特性和运动特性奠定了基础。仿真结果与试验结果典型特征相符,从而验证了该仿真模型的有效性。为研究直流电弧的电气特性,设计了一系列试验测得接地极线路直流电弧全过程电压和电流,深入研究电极结构、外部风场和磁场对电弧电气特性的影响规律,研究了直流电弧运动过程中的电气特性及其影响因素。通过试验发现电弧初始和熄灭阶段,电流产生激烈振荡。电弧运动过程中,频繁发生的弧柱短接和弧根跳跃,造成电压跌落和电流脉冲,其幅度随风速增大而减小。研究发现,增大间隙距离,电弧电压曲线整体向上平移,燃弧时间也随之减小。当电极扩张角度增大时,电压增长越快。通过试验对比,发现双羊角形招弧角电弧电压的增长率比单羊角形更高,表明双羊角形电极对电弧的拉伸作用优于单羊角形电极。通过分析,得到了直流电弧伏安特性曲线,并拟合得到电弧电位梯度,发现电弧电位梯度随电流的增大而减小。电弧电压是维持电弧的关键因素,电弧电压最大值大于电源电压,当电压达到最大值后电弧开始熄灭。为研究直流电弧运动特性,通过高速摄像机记录电弧运动轨迹,研究不同风速、磁场强度、电极扩张角度等因素对电弧的影响。发现电弧受热浮力作用整体向上偏移,弧柱更靠近招弧角上电极,导致弧根跳跃多发生于上电极。上弧根运动速度大于下弧根,通过仿真发现下弧根前进方向区域形成的气旋阻碍了下弧根的运动。由于弧根运动至招弧角电极端部后停留时间较长,导致该处的烧蚀作用更为强烈。通过改变电极的扩张角度,发现电极对电弧的纵向拉伸作用随扩张角增大而增大,对电弧的横向疏导作用则随之减小。研究还发现随着扩张角增大,弧根跳跃的频次增大,同时弧柱也更靠近电极,使间隙出现残留高温,不利于熄弧。由于扩张角增大,热浮力垂直分量增大,使得上弧根体积力增大,弧根运动也更为迅速。对比分析发现招弧角电极扩张角存在一个角度可以兼顾对电弧的拉伸性能和疏导性能。研究了风场对电弧的作用,发现风对弧柱的作用大于对弧根的作用,风加强了对电弧的扩散和冷却作用,促进电弧更快熄灭,弧根跳跃和弧柱短接发生的次数随风速的增大而减少。研究了磁场对电弧的影响,发现磁场对弧根的作用大于对弧柱的作用,磁场越大弧根与电极的夹角越小。弧柱在电磁力的驱动下产生螺旋运动,磁场越大,螺旋运动的空间尺寸也更大。为解决接地极线路直流电弧熄弧难的问题,本文提出了基于金属氧化物阀片的直流电弧自熄弧方法,设计了带熄弧单元的招弧角。首先建立直流接地极系统的电磁暂态仿真模型,该模型包括直流电流源、架空导地线、杆塔和接地电阻、接地极电阻、雷电流、招弧角和熄弧单元等模块。通过仿真计算,发现当超/特高压直流输电系统在单极大地运行模式下,接地极线路遭受雷击导致招弧角击穿时,电弧电流和电压沿接地极线路从换流站到接地极极址方向逐渐减小,雷击点越靠近换流站,导致的后果将比靠近接地极侧更加严重。提出熄弧单元的吸收能量决定了招弧角的熄弧能力,熄弧单元需满足的最小吸收能量由招弧角遭受雷击时的电气特性决定。研究发现接地极线路运行电流大小对熄弧单元吸收能量的影响较小,因为熄弧单元可以迅速切断电弧,其吸收的能量以雷电能量为主。最后,根据仿真计算结果,设计了氧化锌阀片参数,试制了带自熄弧功能的新型招弧角,试验表明该新型招弧角性能符合要求,满足接地极线路实际需要。本文探明了接地极线路直流电弧特性,为今后更深入研究直流电弧提供理论依据,提出了直流电弧熄弧方法,对于解决超特高压直流输电接地极线路熄弧问题有重要的指导意义。

外文摘要:

Recently, extra-high voltage (EHV) and ultra-high voltage (UHV) direct current (DC) transmission technology has been rapidly developed and widely applied in cross-regional grids interconnection and large-capacity long-distance power transmission. The grounding electrode line is an important part of the EHV/UHV DC transmission system, which provides a grounding channel for both unbalanced current and ground return current. It has the characteristics of large current and low voltage. Due to its low external insulation level, it is vulnerable to lightning and switching overvoltage. The arcing horn consists of a pair of electrodes installed in parallel at both ends of the insulator string. The air gap between the electrodes is slightly smaller than the length of the insulator string, so that the lightning impulse flashover voltage is smaller than that of the insulator string. Therefore, the arcing horn will break down before the insulator string when an overvoltage fault occurs, protecting the insulators and the grounding electrode line, therefore ensures the safety and reliability of the EHV/UHV DC transmission system. The DC arc on arcing horn is characterized of large current amplitude, long burning time and difficulty to extinguish. In recent years, there have been many accidents caused by the DC arc on arcing horn, such as conductor fracture and string falling apart, and eventually lead to EHV/UHV DC transmission system closedown with great cost of the national economy.The DC arc of grounding electrode line under outdoor open space is influenced by the electrode type, environment and other factors, and its ignition process is extremely complex. If the DC arc can be transferred to the end of the electrode in time to avoid damage to the insulators and create favorable conditions for rapid arc extinction, it can reduce the fault or outage of the grounding electrode line to ensure the stable operation and reliable power supply of the EHV/UHV DC transmission system, and prevent the large power grid accidents. Therefore, it is necessary to characterize the electrical and motion properties of the DC arc of grounding electrode line with a deep understanding of its underlying physical mechanism. A fundamental theory underlying the DC arc extinguishing would facilitate its potential improvement in reliability and cost-effectiveness.In order to study the characteristics of thermal, electrical, magnetic and force of the DC arc, a magnetohydrodynamic model (MHD) of the arc considering thermal buoyancy was established, which realized the coupling of physical fields and motion state of the DC arc. We also built a 102 kW experimental platform for the DC arc of grounding electrode line to capture the arc shape and measure the electrical parameters such as current and voltage. It provides a basis for studying the electrical characteristics and motion characteristics of the DC arc. The simulation results were consistent with the experimental results, which verified the effectiveness of the model.In order to study the electrical characteristics of the DC arc, we measured the voltage and the current of the whole DC arc process, the influence of the electrode, wind speed and magnetic field on the electric characteristics of the arc was studied, and the influence of the DC arc motion on electrical characteristics was studied too. From these experiments, it is found that the arc current oscillates violently during the initial and extinguishing stages. During the arc movement, the frequent short-circuit of the arc column and the jump of the arc root cause the voltage drop and the current pulse, the amplitude of which decreases with the increase of the wind speed. It is found that as the gap distance increases, the arc voltage curve shifts upward as a whole, and the arcing time also decreases. The voltage increases faster when the expansion angle of the electrode increases. Through experimental comparison, the growth rate of the arc voltage of the double arcing horn is higher than that of the single arcing horn, indicating that the double arcing horn has a better stretching effect. The DC arc volt-ampere characteristic curve is obtained, and the arc potential gradient is fitted. It is found that the arc potential gradient decreases with the increase of the current. Voltage is the key factor to maintain the arc. The maximum value of the arc voltage is greater than the power supply voltage. The arc begins to extinguish when the voltage reaches the maximum value.In order to study the motion characteristics of the DC arc, the arc trajectory was recorded by a high-speed camera, and the effects of different wind speed, magnetic fields, and the expansion angle of the electrodes on the arc were studied. It is found that the arc shift upward due to thermal buoyancy, and the arc column is closer to the upper electrode of the arcing horn, resulting in the arc root jump mostly occurring at the upper electrode. The upper arc root moves faster than the lower arc root, and the simulation results show that the cyclone formed in front of the lower arc root hinders the movement of the lower arc root. The ablation at the end of the upper electrode is more serious, because the upper arc root moves to the end of the electrode and stays for a long time. By changing the expansion angle of the electrode, it is obtained that with the increase of the expansion angle, the longitudinal stretching effect on the arc increases, and the lateral transfer effect decreases. Besides, it is also found that with the increase of the expansion angle, the arc root jumps more frequently, and the arc column is closer to the electrode, leaving high temperature in the gap, which is not conducive to arc extinguishing. As the expansion angle increases, the thermal buoyancy effect increases, which increases the volume force of the upper arc root and makes the arc root move more rapidly. It is found that there is an expansion angle of the electrode which can give consideration to both the extension and transfer of the arc. The effect of the wind speed on the arc was studied. It is found that the effect of the wind on the arc column is greater than that on the arc root. The wind strengthens the diffusion and cooling of the arc and promotes the arc extinction. The number of the arc root jump and the arc column short circuiting decreases with the increase of the wind speed. The influence of magnetic field on arc was studied. It is found that the effect of magnetic field on arc root is greater than that on arc column. The angle between the arc root and the electrode decreases with the increase of the magnetic field. The arc column is driven by the electromagnetic force to produce a spiral, and the space size of the spiral motion increases with the increase of the magnetic field.To solve the difficulty of extinguishing the DC arc, an active arc extinguishing method based on variable resistance for grounding electrode line was proposed here, and the arcing horn with active arc-extinguishing function was designed. The electromagnetic transient simulation model of the HVDC grounding electrode line was established, which included the modules of DC current source, overhead conductor, tower, earth electrode, lightning, arcing horn and the arc extinguishing unit. It is found through simulation calculations that when struck by lightning, the voltage and current of the arcing horn decrease along the electrode line from the converter station to the earth electrode. The impact of the lightning strikes close to the converter station is more serious than those close to the earth electrode. The absorbing energy of the arc extinguishing unit determines the arc extinguishing ability of the arcing horn, and the minimum absorbing energy that the arc extinguishing unit needs to meet is determined by the electrical characteristics of the arcing horn when struck by lightning. The grounding current has little effect on the absorbed energy of the zinc oxide valve. The valves can quickly extinguish the arc of the arcing horn. The absorbed energy is mainly the energy of the lightning. According to the simulation calculation results, the parameters of the zinc oxide valves were designed, and a new type arcing horn with active arc extinguishing function was developed. The tests showed that the preformance of the developed arcing horn meet the requirements and it can be applied to practical engineering.This work unveils the electrical and motion characteristics of the DC arc of grounding electrode line, which provide a theoretical basis for further research on DC arc. The DC arc extinguishing method proposed in this work would provide important guidance for solving the important arc extinction problem of the EHV/UHV DC grounding electrode lines.

分类号:

 TM854    

总页码:

 127    

参考文献总数:

 165    

参考文献:

[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015.

[2] 国家发展改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨路径研究[R]. 北京: 国家发展改革委员会能源研究所, 2015.

[3] 中国能源中长期发展战略研究项目组. 中国能源中长期(2030、2050)发展战略研究:综合卷[M]. 北京: 科学出版社, 2011: 24-27.

[4] 中电联电力统计与数据中心. 2021-2022年度全国电力供需形势分析预测报告[R]. 北京: 中国电力企业联合会, 2021.

[5] 井然. 综合规划 统筹协调 从根本上解决电力供应结构性矛盾[J]. 中国电力企业管理, 2021, 622(1): 14-17.

[6] 刘振亚, 张启平. 国家电网发展模式研究[J]. 中国电机工程学报, 2013, 33(7): 1-10, 25.

[7] 江泽民. 对中国能源问题的思考[J]. 上海交通大学学报, 2008(3): 345-359.

[8] 刘俊. 国家电网列入大气污染防治行动计划“四交四直”输电通道全面竣工[J]. 国家电网, 2018, 174(1): 36-37.

[9] 周卫青, 吴华成, 李睿, 等. “大气污染防治行动计划”特高压工程大气环境效益评估[J]. 全球能源互联网, 2018, 1(S1): 283-289.

[10] 刘振亚. 实现碳达峰碳中和的根本途径[N]. 学习时报. 2021-3-15.

[11] 刘振亚. 特高压直流输电理论[M]. 北京: 中国电力出版社, 2009.

[12] 刘振亚. 特高压直流输电线路[M]. 北京: 中国电力出版社, 2009.

[13] 罗真海, 陈勉, 陈维江, 等. 110kV、220kV架空输电线路复合绝缘子并联间隙防雷保护研究[J]. 电网技术, 2002(10): 41-47.

[14] 陈维江, 孙昭英, 李国富, 等. 110kV和220kV架空线路并联间隙防雷保护研究[J]. 电网技术, 2006(13): 70-75.

[15] 祝永坤, 刘奎, 宋建山. 直流输电系统接地极线路导线脱落事故原因分析及防范措施[J]. 内蒙古电力技术, 2014, 32(6): 111-113.

[16] 刘守豹, 皇甫成, 余世峰, 等. 特高压直流接地极线路过电压研究[J]. 高电压技术, 2018, 44(7): 2410-2417.

[17] 徐松. ±800kV楚穗直流双极平衡运行方式下单极闭锁时接地极过电压分析[J]. 山东工业技术, 2014, 177(19): 166-167.

[18] 刘更生, 郑扬亮, 冉学彬. 天广直流马窝侧接地极线路招弧角运行分析[J]. 电网技术, 2007(S2): 37-39.

[19] Stokes A, Oppenlander W. Electric Arcs in Open Air[J]. Journal of Physics D: Applied Physics, 2000, 24: 26.

[20] Goda Yutaka, Iwata Mikimasa, Ikeda Koichi, et al. Arc Voltage Characteristics of High Current Fault Arcs in Long Gaps[J]. IEEE Transactions on Power Delivery, 2000, 15: 791-795.

[21] Terzija Vladimir, Preston Gary, Popov M., et al. New Static Airarc Emtp Model of Long Arc in Free Air[J]. IEEE Transactions on Power Delivery, 2011, 26: 1344-1353.

[22] 颜湘莲, 陈维江, 王承玉. 长间隙小电流空气电弧动态特性[J]. 电工技术学报, 2009(11): 165-171.

[23] Zhanqing YU, Junjie YU, Rong ZENG, et al. Resistance Characteristics of Arc in Long Air Gap[J]. High Voltage Engineering, 2013, 39(8): 1881-1885.

[24] Yu Zhanqing, Yu Junjie, Zeng R., et al. Arc Characteristics of Parallel Gap for Composite Insulator[J]. 2014 International Conference on Lightning Protection, ICLP 2014, 2014: 107-111.

[25] 行晋源, 李庆民, 丛浩熹, 等. 半波长输电线路潜供电弧多场耦合的动力学建模研究[J]. 中国电机工程学报, 2015, 35(9): 2351-2359.

[26] 丛浩熹, 李庆民, 行晋源, 等. 基于能量平衡的潜供电弧燃弧时间计算方法[J]. 中国电机工程学报, 2015, 35(13): 3450-3458.

[27] 孙秋芹, 周志成, 刘洋, 等. 特高压输电线路潜供电弧的燃弧特性[J]. 高电压技术, 2014, 40(12): 3895-3901.

[28] 李润昌, 刘洪顺, 娄杰, 等. 特高压无补偿线路潜供电弧电气特征与弧柱形态[J]. 高电压技术, 2018, 44(4): 1359-1366.

[29] Midya Surajit, Bormann Dierk, Schutte Thorsten, et al. Pantograph Arcing in Electrified Railways—mechanism and Influence of Various Parameters—part I: with DC Traction Power Supply[J]. IEEE Transactions on Power Delivery, 2009, 24: 1931-1939.

[30] Suhara Keiichi. V-I Characteristics of Short Gap Arc in Air at C, Ag, Cu, Pd, and W Electrodes-measurement and Formulation for Practical Use[J]. IEICE Transactions on Electronics, 2005, E88-C.

[31] 熊兰, 曾泽宇, 杨军, 等. 小电流直流故障电弧的数学模型及其特性[J]. 电工技术学报, 2019(13): 2820-2829.

[32] Kawamura T., Ishii MASARU, Akbar Muhammad, et al. Pressure Dependence of Dc Breakdown of Contaminated Insulators[J]. IEEE Transactions on Electrical Insulation, 1982, 17: 39-45.

[33] 张仁豫, 关志成, 黄超峰. 低气压对玻璃板表面污闪电压的影响[J]. 电网技术, 1994(3): 17-21.

[34] Zhang Zhi-Jin, Jiang Xing-Liang, Hu Jian-Lin, et al. Characteristic of DC Arc Under Low Air Pressure[J]. High Voltage Engineering, 2009, 35(4): 790-795.

[35] Zhang Zhijin, Zhang Dongdong, Zheng Qiang, et al. Investigation of the DC Arc Propagation of Insulator String and Its Performance at Low Air Pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3244-3252.

[36] 臧春艳, 何俊佳, 高小全. 气压对分断电弧两相转变过程的影响研究[J]. 华中科技大学学报(自然科学版), 2009, 37(6): 93-96.

[37] Shiba Yuji, Morishita Yukinaga, Kaneko Shuhei, et al. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage[J]. IEEJ Transactions on Power and Energy, 2008, 128: 1407-1413.

[38] Chao Xin, Jianwen Wu, Bin Liu. Investigation of DC Arc in Hydrogen and Air[C]// 2013 2nd International Conference on Electric Power Equipment-Switching Technology, ICEPE-ST 2013, 2013: 1-4.

[39] 周学. 航天继电器分断电弧及其抑制措施的仿真和实验研究[D]. 哈尔滨工业大学, 2011.

[40] 胡明, 万树德, 夏洋洋, 等. 外部磁场对直流电弧等离子体放电特性的影响及其机理[J]. 高电压技术, 2013, 39(7): 1655-1660.

[41] Sekikawa Junya, Kubono Takayoshi. Motion of Break Arcs Driven By External Magnetic Field in a DC 42 V Resistive Circuit[J]. IEICE Transactions on Electronics, 2008, E91-C.

[42] Sekikawa Junya, Kubono Takayoshi. Rotational Motion of Break Arcs Driven By Radial Magnetic Field in a DC Resistive Circuit[J]. IEICE Transactions on Electronics, 2009, 92-C: 992-997.

[43] Lindmayer M.. Simulation of Switching Arcs Under Transverse Magnetic Fields for DC Interruption[J]. IEEE Transactions on Plasma Science, 44(2): 187-194.

[44] 任万滨, 余琼, 翟国富. 直流电弧静态电压电流特性与稳定燃烧点[J]. 电气电子教学学报, 2010, 32(1): 41-43.

[45] Canellas J., Clarke C.D., Portela C.M.. DC Arc Extinction on Long Electrode Lines for HVDC Transmission[C]//International Conference on DC Power Transmission, 1984: 127-133.

[46] Tanaka Shin-Ichi, Sunabe Kin-Ya, Goda Yutaka. Internal Voltage Gradient and Behavior of Column on Long-gap DC Free Arc[J]. Electrical Engineering in Japan, 2003, 144: 8-16.

[47] 李健, 李显东, 李化, 等. 特高压直流接地极线路招弧角绝缘配合试验研究[J]. 高电压技术, 2016, 42(11): 3481-3487.

[48] Lowke J.J.. Two-dimensional Calculations of Properties of Arcs in High-speed Flow[C]// 7th International Conference on Gas Discharge and Their Applications: Peter Peregrinus Ltd, 1982: 20-27.

[49] Karetta F., Lindmayer M.. Simulation of the Gasdynamic and Electromagnetic Processes in Low Voltage Switching Arcs[J]. IEEE Transaction on Component,packaging and Manufacturing Technology, 1996: 35-44.

[50] Fievet Christian, Barrault Michel, Chevrier Pierre, et al. Experimental and Numerical Studies of Arc Restrikes in Low-voltage Circuit Breakers[J]. IEEE Transactions on Plasma Science, 1997, 25: 954-960.

[51] Rachard Hélène, Chevrier Pierre, Henry Daniel, et al. Numerical Study of Coupled Electromagnetic and Aerothermodynamic Phenomena in a Circuit Breaker Electric Arc[J]. International Journal of Heat and Mass Transfer, 1999, 42: 1723-1734.

[52] Iturregi Araitz, Barbu Bogdan, Torres E., et al. Electric Arc in Low-voltage Circuit Breakers: Experiments and Simulation[J]. IEEE Transactions on Plasma Science, 2016, PP: 1-8.

[53] Swierczynski B, Gonzalez J, Teulet P, et al. Advances in Low-voltage Circuit Breakeradvances in Low-voltage Circuit Breaker Modelling[J]. Journal of Physics D: Applied Physics, 2004, 37: 595.

[54] Lindmayer Manfred, Marzahn Erik, Mutzke Alexandra, et al. The Process of Arc Splitting Between Metal Plates in Low Voltage Arc Chutes[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29: 310-317.

[55] Lindmayer M., Springstubbe M.. Three-dimensional-simulation of Arc Motion Between Arc Runners Including the Influence of Ferromagnetic Material[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 409-414.

[56] Gleizes Alain, Gonzalez J, Liani Bac, et al. Calculation of Net Emission Coefficient of Thermal Plasmas in Mixtures of Gas with Metallic Vapor[J]. Journal of Physics D: Applied Physics, 1999, 26: 1921.

[57] Schlitz Lei, Garimella Suresh, Chan S. Gas Dynamics and Electromagnetic Processes in High-current Arc Plasmas - Part Ii: Effects of External Magnetic Fields and Gassing Materials[J]. Research Publications, 1999, 85.

[58] 李兴文, 陈德桂. 空气开关电弧的数学模型及其特性的研究综述[J]. 高压电器, 2007, 235(4): 269-273.

[59] Yin Jianning, Wang Qian, Li Xingwen. Simulation Analysis of Arc Evolution Process in Multiple Parallel Contact Systems[J]. IEEE Transactions on Plasma Science, 2018, PP: 1-6.

[60] Yin Jianning, Wang Qian, Li Xingwen, et al. Numerical Study of Influence of Frequency and Eddy Currents on Arc Motion in Low-voltage Circuit Breaker[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, PP: 1-8.

[61] 孙志强, 吴翊, 荣命哲, 等. 小型断路器灭弧室的仿真与实验分析[J]. 低压电器, 2010, 348(3): 1-3, 22.

[62] 王伟宗, 荣命哲, B.murphy Anthony, 等. 高温氮气电弧等离子体物性参数的计算分析[J]. 高电压技术, 2010, 36(11): 2777-2784.

[63] 李兴文, 陈德桂. 空气开关电弧的磁流体动力学建模及特性仿真[J]. 中国电机工程学报, 2007, 248(21): 31-37.

[64] 吴翊, 荣命哲, 杨茜, 等. 低压空气电弧动态特性仿真及分析[J]. 中国电机工程学报, 2005(21): 146-151.

[65] Rong M., Li M., Wu Yanbo, et al. 3-d Mhd Modeling of Internal Fault Arc in a Closed Container[J]. IEEE Transactions on Power Delivery, 2014.

[66] Wu Yi, Rong Mingzhe, Li Xingwen, et al. Numerical Analysis of the Effect of the Chamber Width and Outlet Area on the Motion of an Air Arc Plasma[J]. IEEE Transactions on Plasma Science, 2008, 36: 2831-2837.

[67] Wu Yi, Rong Mingzhe, Sun Zhiqiang, et al. Numerical Analysis of Arc Plasma Behaviour During Contact Opening Process in Low-voltage Switching Device[J]. Journal of Physics D: applied Physics, 2007, 40(3): 795-802.

[68] Wu Yi, Rong Mingzhe, Yang Fei, et al. Numerical Modeling of Arc Root Transfer During Contact Opening in a Low-voltage Air Circuit Breaker[J]. IEEE Transactions on Plasma Science, 2008, 36: 1074-1075.

[69] Yang Fei, Rong Mingzhe, Wu Yi, et al. Numerical Analysis of the Influence of Splitter-plate Erosion on an Air Arc in the Quenching Chamber of a Low-voltage Circuit Breaker[J]. Journal of Physics D: Applied Physics, 2010, 43: 434011.

[70] 张晋, 陈德桂, 付军. 低压断路器灭弧室中磁驱电弧的数学模型[J]. 中国电机工程学报, 1999(10): 23-27, 55.

[71] 季良, 陈德桂, 刘颖异, 等. 利用电弧动态数学模型的低压断路器开断过程仿真分析[J]. 中国电机工程学报, 2009, 29(21): 107-113.

[72] Schade Ekkehard, Shmelev Dmitry. Numerical Simulation of High-current Vacuum Arcs with an External Axial Magnetic Field[J]. IEEE Transactions on Plasma Science, 2003, 31: 890-901.

[73] 尚文凯, 王季梅. 大电流真空电弧收缩现象的研究[J]. 中国电机工程学报, 1989(2): 36-43.

[74] 王立军, 贾申利, 史宗谦, 等. 真空电弧磁流体动力学模型与仿真研究[J]. 中国电机工程学报, 2005(4): 115-120.

[75] 王立军, 贾申利, 史宗谦, 等. 开距对不同状态下真空电弧特性影响的仿真分析[J]. 中国电机工程学报, 2008, 270(7): 154-160.

[76] 王立军, 贾申利, 史宗谦, 等. 大电流真空电弧磁流体动力学模型与仿真[J]. 中国电机工程学报, 2006(22): 174-180.

[77] 董华军, 赵鸿飞, 李敏, 等. 真空开关电弧形态几何特性量化实验研究[J]. 真空科学与技术学报, 2013, 33(7): 638-641.

[78] Mori Tadashi, Kawano Hiromichhi, Iwamoto Katsuharu, et al. Gas-flow Simulation with Contact Moving in GCB Considering High-pressure and High-temperature Transport Properties of SF6 Gas[J]. IEEE Transactions on Power Delivery, 2005, 20.

[79] Bini Riccardo, Mahdizadeh Nosratollah, Seeger Martin, et al. Measurements and Simulation of the Dielectric Recovery in a SF6 Circuit Breaker[C]//Proceeding of the 17th International Conference on Gas Discharges and Their Applications, Cardiff: IEEE, 2008: 113-116.

[80] Bini Riccardo, Basse Nils, Seeger Martin. Arc-induced Turbulent Mixing in an SF6 Circuit Breaker Model[J]. Journal of Physics D: Applied Physics, 2011, 44: 9-25203.

[81] 周旭, 曹云东, 付思, 等. 电极旋转运动过程中直流空气电弧的动态分析[J]. 电器与能效管理技术, 2019, 573(12): 20-26.

[82] 刘晓明, 冷雪, 曹云东, 等. 高压SF6断路器电弧与气流相互作用研究[J]. 电工技术学报, 2012, 27(6): 46-52.

[83] 曹云东, 纪腾飞, 刘晓明, 等. 高压SF6断路器三维动态电弧仿真[J]. 沈阳工业大学学报, 2012, 34(2): 125-130.

[84] 刘晓明, 王尔智, 曹云东. 高压SF6断路器电弧动态模型研究[J]. 中国电机工程学报, 2004(2): 103-107.

[85] 曹云东, 刘晓明, 王尔智. 能量流电弧模型及SF6断路器在短路开断下的应用研究[J]. 中国电机工程学报, 2005(2): 96-100.

[86] 曹云东, 刘阳, 刘晓明, 等. 不同旋气槽数对SF6断路器三维气流场影响[J]. 电工技术学报, 2010, 25(9): 74-79.

[87] 林莘, 钟建英. 自能式断路器灭弧室气流场计算的一种新思路[J]. 中国电机工程学报, 2003(10): 164-168.

[88] 中国电机工程学报[C]: 中国电机工程学报, 2012.

[89] 郭泽, 马平, 朱凯, 等. 短路电流对自能膨胀式高压SF6断路器电弧开断过程中阀运动特性的影响[J]. 高电压技术, 2015, 41(9): 3164-3170.

[90] 陈维江, 孙昭英, 王献丽, 等. 35kV架空送电线路防雷用并联间隙研究[J]. 电网技术, 2007(2): 61-65.

[91] Horinouchi K., Nakayama Y., Hidaka M., et al. A Method of Simulating Magnetically Driven Arcs[J]. IEEE Transactions on Power Delivery, 1997, 12: 213-218.

[92] Gu Shanqiang, Jinliang He, Zhang Bo, et al. Movement Simulation of Long Electric Arc Along the Surface of Insulator String in Free Air[J]. IEEE Transactions on Magnetics, 2006, 42: 1359-1362.

[93] 谷山强, 何金良, 陈维江, 等. 架空输电线路并联间隙防雷装置电弧磁场力计算研究[J]. 中国电机工程学报, 2006(7): 140-145.

[94] Gu Shanqiang, Jinliang He, Zeng Rong, et al. Motion Characteristics of Long Ac Arcs in Atmospheric Air[J]. Applied Physics Letters, 2007, 90: 1501-51501.

[95] 司马文霞, 谭威, 杨庆, 等. 基于热浮力-磁场力结合的并联间隙电弧运动模型[J]. 中国电机工程学报, 2011, 31(19): 138-145.

[96] Montanari A. A., Tavares M. C., Portela C. M., et al. Secondary Arc Voltage and Current Harmonic Content for Field Tests Results[C]//IPST09, Kyoto, Japan, 2009.

[97] 李庆民, 行晋源, 丛浩熹, 等. 考虑潜供电弧初始位置随机性的电弧仿真模型[J]. 高电压技术, 2015, 41(6): 1898-1906.

[98] 丛浩熹, 李庆民, 孙秋芹, 等. 半波长输电线路潜供电弧弧根运动和熄灭特性实验研究[J]. 中国电机工程学报, 2014, 34(24): 4171-4178.

[99] Haoxi CONG, Qingmin LI, Jinyuan XING, et al. Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-wavelength Transmission Lines[J]. Plasma Science and Technology, 2014, 16(9): 843-847.

[100] Haoxi CONG, Qingmin LI, Jinyuan XING, et al. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines[J]. Plasma Science and Technology, 2015, 17(6): 475-480.

[101] Sun Qiuqin, Liu Hao, Xiao Zhibin, et al. Investigation on Volt-Ampere Characteristic of Secondary Arc Burning in Atmospheric Air[J]. Physics of Plasmas, 2018, 25: 93513.

[102] 行晋源, 李庆民, 丛浩熹, 等. 长距离输电线路潜供电弧弧根跳跃与弧长剧变的物理机制与仿真[J]. 电工技术学报, 2016, 31(12): 90-98.

[103] 夏天, 刘洪顺, 李润昌, 等. 潜供电弧模拟实验图像边缘检测与形态特征分析[J]. 中国电机工程学报, 2019, 39(3): 923-932, 971.

[104] 陈维江, 颜湘莲, 贺子鸣, 等. 特高压交流输电线路单相接地潜供电弧仿真[J]. 高电压技术, 2010, 36(1): 1-6.

[105] 韩伟锋. 弓网电弧磁流体动力学模型及温度分布研究[D]. 西南交通大学, 2014.

[106] 王万岗. 高速铁路弓网电弧动态特性研究[D]. 西南交通大学, 2013.

[107] 郝静. 弓网电弧动态演化及其对弓网材料侵蚀特性研究[D]. 西南交通大学, 2017.

[108] 陈晨旭. 高速铁路电分相电孤模型与电弧运动发展规律研究[D]. 西南交通大学, 2019.

[109] 朱光亚, 吴广宁, 高国强, 等. 高速列车静态升降弓电弧的磁流体动力学仿真研究[J]. 高电压技术, 2016, 42(2): 642-649.

[110] 郝长金, 尹小兵, 古圳, 等. 基于磁流体动力学模型的弓网电弧温度场仿真[J]. 高压电器, 2016, 52(7): 123-129.

[111] 吴广宁, 古圳, 高国强, 等. 弓网电弧形态特性试验研究[J]. 高电压技术, 2015, 41(11): 3531-3537.

[112] Pan Xu, Yang Zefeng, Wei Wenfu, et al. Modeling and Simulation of Arc and Contact Wire Molten Pool Behavior During Pantograph Lowering Process[J]. Aip Advances, 2018, 8: 115008.

[113] 许潘. 弓网电弧特性及其与弓网材料相互作用的建模仿真研究[D]. 西南交通大学, 2019.

[114] 王英, 刘志刚, 高仕斌. 风载荷下高速动车组升降弓拉弧的动态计算[J]. 电力系统及其自动化学报, 2016, 28(1): 5-9, 23.

[115] 郎文昌, 高斌, 杜昊, 等. 多模式旋转磁场对电弧离子镀弧斑放电的影响分析[J]. 真空科学与技术学报, 2015, 35(6): 662-670.

[116] Minoo H, Arsaoui A, Bouvier A. An Analysis of the Cathode Region of a Vortex-stabilized Arc Plasma Generator[J]. Journal of Physics D: Applied Physics, 1999, 28: 1630.

[117] Guile A.E., Hitchcock A.H.. Effect of Transverse Magnetic Field on Erosion Rate of Cathodes of Rotating Arcs[J]. IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, 1981: 117-122.

[118] Zha Jun, Zhang Xiaoning, Xu Zimu, et al. Phenomena of Multiarc Roots and Parallel Arcs in a Large-scale Magnetically Rotating Arc Plasma Generator[J]. IEEE Transactions on Plasma Science, 2013, 41: 601-605.

[119] 杜百合, 黎林村, 马强, 等. 磁驱动旋转电弧运动图像及弧电压脉动的实验研究[J].核技术, 2005(10): 745-750.

[120] Ondac P., Maslani A., Hrabovsky M., et al. Measurement of Anode Arc Attachment Movement in DC Arc Plasma Torch at Atmospheric Pressure[J]. Plasma Chemistry and Plasma Processing, 2018(38): 637-654.

[121] Sekikawa Junya, Kubono Takayoshi. Optical Observation of Arc Discharges Between Electrical Contacts Breaking at Low Speed in DC42 V Resistive Circuit[J]. IEICE Transactions on Electronics, 2006, 89-C: 1147-1152.

[122] Zhai Guofu, Zhou Xue, Yang Wenying. Investigation on Arc Characteristics Under Axial and Transverse Magnetic Fields[J]. IEICE Technical Report, 2008, 108(296): 137-140.

[123] 翟国富, 周学, 杨文英. 纵向与横向磁场作用下分断直流感性负载时的电弧特性实验[J]. 电工技术学报, 2011(1): 68-74.

[124] 辛超, 武建文. 直流氢气-氮气混合气体电弧开断过程实验研究[J]. 电工技术学报, 2015(13): 117-124.

[125] 王胜辉, 詹振宇, 陈维江, 等. 基于短间隙模型的直流输电线路极间短路电弧运动仿真研究[J]. 电网技术, 2018, 42(7): 2353-2359.

[126] 徐志坚. 直流接地极招弧角熄弧能力研究[D]. 华中科技大学, 2015.

[127] Schrank Clemens, Neuhaus Alexander, Weis Martin. The Influence of Different Atmospheres on Arc Width, Arc Mobility, and Contact Welding Investigated for Low Power Switches[C]// IEEE Holm Conference on Electrical Contacts, 2007: 130-133.

[128] Chunyan Z., He Junjia, Peng L., et al. Research on the Influnce of Impurity Atmosphere to Arc Burning Between Contacts of Sealed Relay[C]//2008 17th International Conference on Gas Discharges and Their Applications, 2008: 109-112.

[129] Jiang WEI, Lige ZHANG, et al. Effect of Surrounding Atmospheres on Break Arc Durations of Electrical Contacts in DC Load Conditions[J]. IEICE Transactions on Electronics, 2020, E103.C(1):16-27.

[130] 郭晓雪, 赵虎, 李兴文. 热态CO2及其与O2混合气体热动属性及电击穿特性的计算分析[J]. 高电压技术, 2014, 40(10): 3085-3090.

[131] 唐念, 赵虎, 黎晓淀, 等. CO2气体断路器弧后击穿特性计算分析[J]. 高电压技术, 2020, 46(3): 790-798.

[132] 赵虎, 李兴文, 贾申利. SF6及其混合气体临界击穿场强计算与特性分析[J]. 西安交通大学学报, 2013, 47(2): 109-115.

[133] 朱凯, 李兴文, 赵虎, 等. 高压气体断路器弧后电流特性的实验研究[J]. 中国电机工程学报, 2014, 34(21): 3512-3517.

[134] Horinouchi K., Nakayama Y., Hidaka M., et al. Method of Simulating Magnetically Driven Arcs[J]. IEEE Transactions on Power Delivery, 1997, 12(1): 213-218.

[135] Hasegawa Makoto, Tokumitsu Seika. Influences of Contact Opening Speeds Up to 200 mm/s and External Magnetic Field Application on Break Arc Duration Characteristics of AgSnO2 Contacts in DC 14 V Load Conditions Up to Around 10 A[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(3): 375-382.

[136] Hasegawa Makoto, Tokumitsu Seika. Break Arc Duration Characteristics of AgSnO2 Contacts Under Magnetic Field Application with Contact Opening Speeds in the Range Up to 200mm/s in DC Load Conditions[C]//IEEE Holm Conference on Electrical Contacts, 2016: 119-224.

[137] Lindmayer M.. Cooling Mechanisms of Switching Arcs Under Transverse Magnetic Fields in Comparison with Arcs Without Magnetic Blast[J]. IEEE Transactions on Plasma Science, 46(2): 444-450.

[138] 张志强, 张国钢, 郄爽, 等. 微型断路器中灭弧栅片对电弧磁吹力的试验研究[J]. 电器与能效管理技术, 2016, 504(15): 13-16.

[139] 崔芮华, 李超, 李振平. 磁场作用下分断初速度对直流分断电弧两相燃弧时间影响的研究[J]. 电器与能效管理技术, 2016, 511(22): 6-9, 49.

[140] Hasegawa M.. An Experimental Study of the Minimum Arc Current of Silver Contacts with Different Opening Speeds[C]//Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, 16: 294-299.

[141] Hasegawa M.. Influences of Contact Opening Speeds on Break Arc Behaviors of Ag and AgSnO2 Contacts in DC Load Circuits[C]//2013 2nd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST), 20: 1-4.

[142] Yoshida K., Sawa K., Suzuki K., et al. Influence of Opening Velocity on Various Characteristics in DC High Voltage Ag Break Arc[C]//2015 IEEE 61st Holm Conference on Electrical Contacts (Holm), 11: 111-116.

[143] Parekh M., Magnusson J., Becerra M., et al. Effect of Contact Velocity on the Behaviour of Decaying Arcs in Air[C]//2018 IEEE Holm Conference on Electrical Contacts, 2018: 77-80.

[144] Chadebec O., Meunier G., Mazauric V. G., et al. Eddy-current Effects in Circuit Breakers During Arc Displacement Phase[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1358-1361.

[145] Ruiguang Ma, Mingzhe Rong, Fei Yang, et al. Investigation on Arc Behavior During Arc Motion in Air DC Circuit Breaker[J]. IEEE Transactions on Plasma Science, 2013, 41(9): 2551- 2560.

[146] 薄凯, 陈柏翰, 周学, 等. 直流小型断路器分断电弧特性试验研究[J]. 电器与能效管理技术, 2018, 559(22): 35-39.

[147] 张海燕, 邱广庭, 江长生, 等. 基于Fluent的断路器灭弧室气流场仿真分析[J]. 电器与能效管理技术, 2019, 570(9): 41-44.

[148] Washino Masami, Fukuyama Atsushi, Kito K., et al. Development of Current Limiting Arcing Horn for Prevention of Lightning Faults on Distribution Lines[J]. IEEE Transactions on Power Delivery, 1988, 3: 187-196.

[149] Hashimoto Yousuke, Fukui Hiroshi, Yano Toshihiro, et al. Development of Current Limiting Arcing Horn (MOV Type Arrester with External Gap) for 22kV Power Distribution Line[C]//2011 7th Asia-Pacific International Conference on Lightning, 2011: 36-39.

[150] Chino Takashi, Iwata Mikimasa, Imoto Sugio, et al. Development of Arcing Horn Device for Interrupting Ground-fault Current of 77 kV Overhead Lines[J]. IEEE Transactions on Power Delivery, 2005, 20: 2570-2575.

[151] 王巨丰, 张华驿, 李籽剑, 等. 高速气流灭弧防雷方法熄灭直流电弧的有效性[J]. 高电压技术, 2018, 44(8): 2472-2478.

[152] 王巨丰, 李世民, 闫仁宝, 等. 可主动快速熄灭工频续流电弧的灭弧防雷间隙装置设计[J]. 高电压技术, 2014, 40(1): 40-45.

[153] 王巨丰, 黄志都, 王嬿蕾, 等. 基于链式的爆炸气流场耦合电弧动态模型[J]. 中国电机工程学报, 2012, 32(7): 154-160, 204.

[154] Podporkin G.V., Enkin E., Kalakutsky Eugeny, et al. Lightning Protection of Overhead Lines By Multi-chamber Arresters and Insulator-arresters[C]//2010 30th International Conference on Lightning Protection (ICLP), 2010: 1-9.

[155] Muermann Mario, Chusov Alexander, Fuchs Roman, et al. Modeling and Simulation of the Current Quenching Behavior of a Line Lightning Protection Device[J]. Journal of Physics D: Applied Physics, 2016, 50.

[156] Podporkin G.V., Enkin E., Kalakutsky Eugeny, et al. Development of Multi-chamber Insulator-arresters for Lightning Protection of 220 kV Overhead Transmission Lines [C]// 2011 International Symposium on Lightning Protection. IEEE, 2011.

[157] Frolov Vladimir, Ivanov Dmitriy, Murashov Iurii, et al. Mathematical Simulation of Processes in Discharge Chamber of Multi-chamber System for Lightning Protection at Overhead Power Lines[C]//2016 IEEE Nw Russia Young Researchers in Electrical and Electronic Engineering Conference, 2016: 562-565.

[158] Jia Wenbin, Sima Wenxia, Yuan Tao, et al. Optimization and Experimental Study of the Semi-closed Short-gap Arc-extinguishing Chamber Based on a Magnetohydrodynamics Model[J]. Energies, 2018, 11: 3335.

[159] 司马文霞, 贾文彬, 袁涛, 等. 多段微孔结构中电弧的磁流体模型及气吹灭弧性能仿真[J]. 高电压技术, 2016, 42(11): 3376-3382.

[160] Guo Zhiwei, Long Xinping, Qian Zhong-dong, et al. Three Dimensional Simulation of the Arc Inside an Insulator-arrester with a Multichamber System[J]. Aip Advances, 2016, 6: 045117.

[161] Li ZJ, Wang JF, Zhou X, et al. DC Arc Suppression in the Improved Multichamber Structure[J]. Aip Advances, 2019, 9(5).

[162] 王巨丰, 周鑫, 王中, 等. 自能式多断口结构对电弧抑制的仿真优化[J]. 电网技术, 2019, 43(2): 739-745.

[163] Murphy A B, Arundell C J. Transport coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen and Argon-Oxygen plasmas[J]. Plasma Chemistry and Plasma Process, 1994, 14(4): 451-490.

[164] 王伟宗, 荣命哲, Anthony B.Murphy, 等. 高温氮气电弧等离子体物性参数的计算分析[J]. 高电压技术, 2010, 36(11): 2777-2784.

[165] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究[J]. 物理学报, 2012, 61(10): 272-281.

馆藏位置:

 TM854 B 2022    

开放日期:

 2022-12-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式