- 无标题文档
查看论文信息

中文题名:

 考虑土体非共轴各向异性盾构施工诱发地层变形研究    

姓名:

 崔建    

一卡通号:

 0000310014    

论文语种:

 中文    

学科名称:

 工学 - 土木工程 - 桥梁与隧道工程    

公开时间:

 公开    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西南交通大学    

院系:

 土木工程学院    

专业:

 桥梁与隧道工程    

第一导师姓名:

 方勇    

第一导师单位:

 西南交通大学    

完成日期:

 2022-09-09    

答辩日期:

 2022-11-20    

外文题名:

 STUDY ON SOIL DEFORMATION INDUCED BY SHIELD CONSTRUCTION CONSIDERING NON-COAXIALITY AND ANISOTROPY OF SOIL    

中文关键词:

 盾构隧道 ; 砂卵石地层 ; 黏-砂复合地层 ; 地层变形 ; 地表沉降预测 ; 土体非共轴特性 ; 各向异性 ; 弹塑性模型 ; 离心模型试验 ; 小孔收缩理论    

外文关键词:

 shield tunnel ; sandy pebble soil ; clay-sand composite stratum ; soil deformation ; prediction of surface settlement ; non-coaxiality ; anisotropy ; elastoplastic constitutive model ; centrifugal model test ; cavity contraction theory    

中文摘要:

随着我国城市化进程的高速发展,城市隧道的建设规模处于历史的高发展期。盾构法因其自身施工优势,已成为我国城市隧道建设主流施工方法。在盾构隧道施工过程中,其引起的地层变形预测和控制一直是隧道建设工程的核心任务之一。我国广泛分布砂卵石地层,且盾构真实掘进环境中常遇复合地层,如砂卵石等极端不均匀地层,复合地层等非均质地层土体各向异性显著,盾构掘进势必诱发主应力轴旋转的应力路径。然而,当前用于盾构隧道工程数值模拟的本构模型,局限于土体各向同性框架下的共轴假设,难以充分反映实际盾构掘进隧道周围土体力学响应的复杂性。而对地层土体真实力学行为的认识不足,将使城市敏感环境盾构隧道施工安全面临巨大挑战。本文以土体非共轴各向异性本构模型的构建为着眼点,以砂卵石地层、黏-砂复合地层盾构施工掘进为研究对象,依托京张高铁清华园隧道工程,综合采用文献调研、数值模拟、理论分析及模型试验相结合的研究手段,对砂卵石地层及黏-砂复合地层盾构隧道施工诱发的地层变形问题进行了系统研究。针对土体各向异性及非共轴特性提出了二维非共轴各向异性弹塑性本构模型及三维横观各向同性弹塑性本构模型,并通过有限元软件二次开发应用到盾构隧道开挖数值分析中。基于小孔收缩理论,建立了复合地层中隧道开挖平均支护力、地层损失率及地表沉降三者之间相互关联的理论计算公式。通过现场实测及离心模型试验对本文本构模型、数值分析方法及理论解析方法进行了验证。本文的主要内容及研究成果如下:(1)提出了适用于砂、黏及砂卵石土的非共轴各向异性弹塑性本构模型。基于二维各向同性Mohr-Coulomb屈服准则,采用将屈服面椭圆化的形式在塑性阶段实现了对土体初始各向异性的描述,在塑性阶段引入非共轴塑性流动法则,建立了二维非共轴各向异性弹塑性本构模型(NCAM);基于三维各向同性Mohr-Coulomb屈服准则,为了考虑土体的初始刚度各向异性,在弹性阶段引入了横观各向同性,建立了三维横观各向同性弹塑性本构模型(CAM)。基于修正显式欧拉积分算法和自适应子步长相结合的数值积分算法,针对提出的非共轴各向异性弹塑性本构模型编写代码,并嵌入到数值程序中。利用单剪试验有限元数值模拟和三轴试验有限元数值模拟,测试了NCAM模型和CAM模型在ABAQUS软件单元体及多单元体计算中的有效性和计算能力。(2)首次将考虑土体非共轴各向异性的本构模型应用到盾构隧道施工实际工程中。基于提出的二维非共轴各向异性弹塑性本构模型和三维横观各向同性弹塑性本构模型,系统开展了盾构隧道施工诱发地层变形的二维及三维有限元数值分析,探明了土体各向异性和非共轴特性对地层变形的影响机制,明确了各向异性参数和非共轴参数对地表沉降的影响规律。随着各向异性参数n的减小,隧道轴线上方的最大竖向沉降值增加。各向异性参数n的值越小,计算得到的地表横向沉降槽的形状显得越窄且越陡。当各向异性形状参数β=0 °时,地表横向沉降槽变得“窄而深”。非共轴性很可能同时影响沉降槽的形状和最大值,地表最大竖向沉降随着非共轴参数k的增大而增大。在NCAM模拟中,考虑n=0.6及β=0°时,得到的地表横向沉降槽与现场实测数据较为匹配。在CAM模拟中,当α=0.55 时,数值模拟得到的纵向沉降槽可以与现场实测得到的纵向沉降槽匹配良好。与现有研究相比,采用考虑土体非共轴各向异性的弹塑性本构模型进行盾构隧道施工诱发地表沉降数值模拟,可以得到与现场实测较为匹配的“窄而深”的地表横向沉降槽,提高了城市敏感环境盾构精准穿越的预控能力。(3)建立了复合地层中隧道开挖平均支护力、地层损失率及地表沉降三者之间相互关联的理论预测方法。基于单一均质地层岩土介质小孔收缩理论,推导了复合地层中小孔收缩问题的弹塑性解析解,并将其应用到隧道开挖中,得到了复合地层隧道平均支护力与地层损失之间的理论解析关系。基于Loganathan和Poulos地层变形预测方法,利用Hirai提出的当量厚度换算方法,给出了复合地层盾构隧道开挖引起的地层变形计算方法,明确了各因素对隧道开挖收敛特征曲线的影响。以地层损失为中间变量,建立了复合地层中隧道开挖平均支护力、地层损失率及地表沉降三者之间相互关联的理论计算公式。(4)开展了一组双工况的黏-砂复合地层盾构隧道开挖离心模型试验,得到了黏-砂复合地层盾构开挖引起的地表横向沉降槽和地中位移变化规律。试验结果表明隧道上方覆土的弹性模量对地层变形影响较大;随地层损失率的增加,地表最大沉降呈近似线性增加。针对离心模型试验结果得到的地表沉降进行预测分析,综合判断三种地表沉降预测方法的有效性和可行性,本文数值模拟预测方法相对于本文理论解析方法、Peck曲线拟合结果而言,预测结果更好。进一步地说明,在盾构隧道开挖引起的地层变形预测时,将土体的非共轴各向异性考虑进去十分有必要。(5)以确保盾构机的安全高效顺利掘进和周围既有建(构)筑物的正常使用为目标,基于数值模拟、理论分析及离心模型试验,考虑了土体非共轴各向异性,形成了一套优势互补、相互印证、合理且有效的盾构隧道施工诱发地层变形的预测方法。

外文摘要:

With the rapid development of urbanization in China, the construction scale of urban tunnels is in a historical period of high development. Shield method has become the mainstream construction method of urban tunnel construction in China due to its own construction advantages. The prediction and control of soil deformation caused by shield tunnel construction has always been one of the key tasks of tunnel construction projects. There are widely distributed sandy cobble soil with inhomogeneous soil properties in China. In addition, composite strata are often encountered in the real environment of shield tunnelling, such as extremely uneven strata of sandy pebbles. The anisotropy of soil in heterogeneous strata such as composite strata is significant, and shield tunnelling is bound to induce the principal stress axis rotation. However, the current constitutive models for numerical simulation of shield tunnel engineering are limited to the coaxial assumption under the isotropic framework of soil, which is difficult to fully reflect the complexity of the mechanical response of the soil around the real shield tunnel. The lack of understanding of the true mechanical behavior of soil will make the safety of shield tunnel construction in urban sensitive environment face great challenges.In this paper, the construction of non-coaxial anisotropic constitutive model of soil were taken as the basic starting point, shield tunnelling in sandy cobble soil and clay-sand composite stratum was takeing as the research object, and the Tsinghuayuan Tunnel of Beijing-Zhangjiakou High-speed Railway was taken as the engineering background. The research methods combining literature survey, numerical simulation, theoretical analysis and model test were all performed to systematically investigate the soil deformation induced by shield tunnel construction in sandy cobble stratum and silty clay-medium coarse sand composite stratum. A two-dimensional non-coaxial anisotropic elastoplastic constitutive model and a three-dimensional cross-anisotropic elastoplastic constitutive model were proposed for the anisotropy and non-coaxiality of soil, which are applied to the numerical analysis of shield tunnel excavation through the secondary development of finite element software. Based on the cavity contraction, a closed-form solution for the correlation among the average support force, volume loss rate and surface settlement of tunnel excavation in composite strata was established. The constitutive model, numerical analysis method and theoretical analysis method were verified by field data and centrifugal model test. The main research work and conclusions are as follows:(1) Non-coaxial anisotropic elastoplastic constitutive models suitable for sandy cobble soil and clay-sand composite stratum was proposed. Based on the two-dimensional isotropic Mohr-Coulomb yield criterion, the initial anisotropy of soil was described by ellipticizing the yield surface in the plastic stage combined with the non-coaxial plastic flow rule introduced in the plastic stage, and the two-dimensional non-coaxial anisotropic elastoplastic constitutive model is established. Based on the three-dimensional isotropic Mohr-Coulomb yield criterion, in order to consider the initial stiffness anisotropy of soil, the cross-anisotropy was introduced in the elastic stage, and the three-dimensional cross-anisotropic elastoplastic constitutive model is established. Based on the numerical integration algorithm combined with the modified explicit Euler integration algorithm and the adaptive substepping schemes, the code was written for the proposed non-coaxial anisotropic elastoplastic constitutive model and embedded into the numerical program. Using the finite element numerical simulation of single shear test and triaxial test, the effectiveness and calculation ability of NCAM model and CAM model in ABAQUS software element and multi-element calculation were tested.(2) For the first time, the constitutive model considering non-coaxiality and anisotropy of soil was applied to the practical engineering of shield tunnel construction. Based on the proposed two-dimensional non-coaxial anisotropic elastoplastic constitutive model and three-dimensional cross-anisotropic elastoplastic constitutive model, the two-dimensional and three-dimensional finite element numerical analysis of soil deformation induced by shield tunnel construction was systematically carried out. The influence mechanism of soil anisotropy and non-coaxiality on soil deformation was proved, and the influence law of anisotropic parameters and non-coaxial parameters on surface settlement was clarified. With the decrease of anisotropic parameter n, the maximum vertical settlement above the tunnel axis increases. The smaller the anisotropic parameter n is, the narrower and steeper the shape of the calculated surface transverse settlement trough is. When the anisotropic shape parameter β=0 °, the transverse settlement trough becomes “narrow and deep”. Non-coaxiality is likely to affect the shape and maximum value of the settlement trough at the same time. The maximum vertical settlement of the surface increases with the increase of the non-coaxial parameter k. However, the results are not satisfactory due to the small volume loss. In NCAM simulation, when n=0.6 and β=0°are considered, the obtained surface transverse settlement trough is almost consistent with the field data. In CAM simulation, when α=0.55 , the longitudinal settlement trough obtained by numerical simulation can match well with the measured longitudinal settlement trough. Compared with the existing research, the elastoplastic constitutive model considering the non-coaxiality and anisotropy of soil is used to conduct the numerical simulation of surface settlement induced by shield tunnel construction, and the “narrow and deep” transverse settlement trough that is more matched with the field data can be obtained, which improves the pre-control ability of shield tunnelling in urban sensitive environment.(3) The theoretical prediction method for the correlation among the average support force, volume loss rate and surface settlement of tunnel excavation in composite strata was established. Based on the cavity contraction of single homogeneous soil medium, the closed-form solution for the cavity contraction problem in composite strata was derived, and it is applied to tunnel excavation. The theoretical analytical relationship between the average support force of the tunnel in composite strata and the volume loss was obtained. Combined with Loganathan and Poulos soil deformation prediction method and equivalent thickness conversion method proposed by Hirai, the soil deformation calculation method caused by shield tunnel excavation in composite stratum was given, and the influence of various factors on tunnel excavation convergence characteristic curve was clarified. Taking the volume loss as the intermediate variable, the theoretical calculation formula of the correlation among the average support force, volume loss rate and surface settlement of tunnel excavation in composite stratum was established.(4) The centrifugal model test of shield tunnel excavation in silty clay-medium coarse sand composite stratum was carried out, and the transverse settlement trough and ground displacement caused by shield excavation in silty clay-medium coarse sand composite stratum were obtained. The test results show that the elastic modulus of the overburden above the tunnel has a great influence on the soil deformation. With the increase of volume loss rate, the maximum surface settlement increases approximately linearly. According to the prediction and analysis of the surface settlement obtained from the centrifugal model test results, the effectiveness and feasibility of the three surface settlement prediction methods were comprehensively judged, and the NCAM numerical simulation results are relatively good. It further shows that it is necessary to consider the non-coaxiality and anisotropy of soil in the prediction of soil deformation caused by shield tunnel excavation.(5) In order to ensure the safe, efficient and smooth excavation of the shield machine and the normal use of the surrounding existing buildings, based on numerical simulation, theoretical analysis and centrifugal model test, considering the non-coaxiality and anisotropy of the soil, a set of complementary advantages, mutual confirmation, reasonable and effective prediction method of soil deformation induced by shield tunnel construction was formed.

分类号:

 U25    

总页码:

 216    

参考文献总数:

 324    

参考文献:

[1] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[ER/OL]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202202/t20220228_1827971.html.

[2] 冯爱军. 中国城市轨道交通2021年数据统计与发展分析[J]. 隧道建设(中英文),2022,42(02): 336-341.

[3] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报,2022,35(04): 1-40.

[4] 巩江峰,唐国荣,王伟,范磊. 截至2021年底中国铁路隧道情况统计及高黎贡山隧道设计施工概况[J]. 隧道建设(中英文), 2022, 42(03): 508-517.

[5] 刘方. 砂卵石地层泥水平衡盾构泥浆性能及掘进面稳定性研究[D]. 重庆交通大学,2019.

[6] 国务院关于印发“十四五”现代综合交通运输体系发展规划的通知[J].中华人民共和国国务院公报,2022(04):8-28.

[7] 王梦恕. 中国盾构和掘进机隧道技术现状、存在的问题及发展思路[J]. 隧道建设(中英文),2014,34(03):179-187.

[8] 何川,封坤. 大型水下盾构隧道结构研究现状与展望[J]. 西南交通大学学报,2011, 46(01):1-11.

[9] 王俊. 土压平衡盾构掘进对上软下硬地层扰动研究[D].西南交通大学,2017.

[10] 何理,仇陪云,石杰红,刘晶晶. 城市轨道交通施工风险统计及事故特征分析[J]. 中国安全生产科学技术,2020,16(S1):130-134.

[11] 程霖. 地铁隧道开挖引起地下管线变形的理论分析和试验研究[D].北京交通大学,2021.

[12] 童朝霞. 应力主轴循环旋转条件下砂土的变形规律与本构模型研究[D].清华大学,2008.

[13] Seed, H.B., Seed, R.B., Harder, L.F. Jr, Jong, H.L. (1989). Re-evaluation of the Lower San Fernando Dam, Report No.2, Examination of the Post-Earthquake Slide of February 9, 1971, Washington, DC: Dept of Army, US Army Corps of Engineers.

[14] Sessa, S., Sekiguchi, H. (1999). Analysis of Wave-Induced Liquefaction of Beds of Sand in a Centrifuge. Géotechnique, 49(5):621-638.

[15] Grabe, P.J., Clayton, C.R.I. (2009). Effects of Principal Stress Rotation on Permanent Deformation in Rail Track Foundations. Journal of Geotechnical and Geoenvironmental Engineering, 135(4):555-565.

[16] 杜修力,张佩,金浏,路德春. 砂砾石地层隧道开挖模拟多尺度分析方法[J]. 中国科学:技术可续,2017,47(5):547-558.

[17] Peck, R.B. (1969). Deep excavations and tunnelling in soft ground [C]. In 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, pp.225-290.

[18] 张治国,杨轩,赵其华,白乔木. 盾构隧道开挖引起地层位移计算理论的对比与修正[J]. 岩土工程学报,2016,38(S2):272-279.

[19] Loganathan, N. (1998). Analytical prediction for tunneling-induced ground movenments in clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, 124(9):846-856.

[20] 房倩,杜建明,王赶,王中举,王冠清. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治,2020,2(3):67-76.

[21] Zheng, G., Ge, L., Zhang, T., Sun, J., Fan, Q., Tong, J. (2019). Volumetric behaviour of subsurface ground due to tunnelling in completely drained granular soil [J]. Computers and Geotechnics, 116(12):103217.

[22] Marshall, A.M., Taylor, R.N., Bracegirdle, A. (2012). Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements [J]. 62(5):385-399.

[23] Martos, F. (1958). Concerning an approximate equation of subsidence trough and its time factors [C]. Proc, of the International Strata Control Congress, Leipzig.

[24] Attewell, P.B., Woodman, J.P. (1982). Predicting the dynamics of ground settlement and its derivatives caused by tunnelling in soil [J]. Ground Engineering, 15(8):13-20.

[25] Attewell, P.B., Yeates, J., Selby, A.R. (1986). Soil movements induced by tunnelling and their effects on pipelines and structures [J]. Methuen Inc New York Ny.

[26] 刘建行,候学渊. 盾构法隧道[M]. 中国铁道出版社,北京,1991.

[27] Vorster, T.E., Klar, A., Soga, K., et al. (2005). Estimating the effects of tunneling on existing pipelines [J]. Journal of Geotechnical and Geoeenvironmental Engineering, 131(11):1399-1410.

[28] Fang, Y., He, C., Nazem, A., Yao, Z.G., Grasmick, J. (2016). Surface settlement prediction for EPB shield tunneling in sandy ground [J]. KSCE Jounal of Civil Engineering, 21(7):2908–2918.

[29] Fang, Y.S., Lin, S.J., Lin, J.S. (1993). Time and settlement in EPB shield tunneling [J]. Tunnels and Tunneling, 134(11):27-28.

[30] Celestino, T.B., Gomes, R., Bortolucci, A.A. (2000). Errors in ground distortions due to settlement trough adjustment [J]. Tunnelling and Underground Space Technology, 15(1): 97-100.

[31] Sagaseta, C. (1987). Analysis of undrained soil deformation due to ground loss [J]. Geotechnique, 37(3):301-320.

[32] Sagaseta, C. (1988). Discussion on: Sagaseta, C Analysis of undrained soil deformation due to ground loss [J]. Author’s reply to B. Schmidt. Geotechnique, 38(4):647-649.

[33] Uriel, A.O., Sagaseta, C. (1989). Selection of design parameters for underground construction. In Proceedings of the 12th International Congress on Soils Mechanics, Rio de Janeiro, 13-18 August 1989. General report, Discussion session. A.A. Balkema, Rotterdam, The Netherlands. Vol. 9, pp. 2521-2551.

[34] Gonzalez, C., Sagaseta, C. (2001). Patterns of soil deformations around tunnels [J]. Application to the extension of Madrid Metro. Computers and Geotechnics, 28: 445-468.

[35] Verruijt, A., Booker, J.R. (1996). Surface settlements due to deformation of a tunnel in an elastic half plane [J]. Geotechnique, 46(4):753-756.

[36] Lee, K.M., Rowe, R.K., Lo, K.Y. (1992). A method of estimating surface settlement above shallow tunnels constructed in soft ground [J]. Canadian Geotechnical Journal, 20:11-22.

[37] Loganathan, N. and Poulos, H.G. (1998). Analytical prediction for tunneling induced ground movements in clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, 124(9):846-856.

[38] Chen, L.T., Poulos, H.G., Loganathan, N. (1999). Piles responses caused by tunneling [J]. Journal of Geotechnical and Geoenvironmental Engineering, 125(3):207-215.

[39] 姜忻良,赵志民. 盾构施工引起土体位移的空间计算方法[J]. 华中科技大学学报(城市科学版),2005(02):1-4+12.

[40] 卢海林,赵志民,方芃,等. 盾构法隧道施工引起土体位移与应力的镜像分析方法[J]. 岩土力学,2007,28(1):45-50.

[41] 魏纲,黄志义,徐日庆,等. 土压平衡盾构施工引起的挤土效应研究[J]. 岩石力学与工程学报,2005,24(19):3522-3528.

[42] 魏纲,魏新江,龚慈,等. 软土中盾构法隧道引起的土体移动计算研究[J]. 岩土力学,2006,27(6):995-999.

[43] 魏纲. 盾构施工中土体损失引起的地面沉降预测[J]. 岩土力学,2007,28(11): 2375-2379.

[44] 齐静静,徐日庆,魏纲,等. 隧道盾构法施工引起周围土体附加应力分析[J]. 岩土力学,2008,29(2):529-535.

[45] 魏纲. 盾构法隧道施工引起的土体变形预测[J]. 岩石力学与工程学报,2009,28(2):418-424.

[46] 傅鹤林,张加兵,黄震,等. 复合地层中浅埋盾构隧道开挖引起的地层位移及应力预测分析[J]. 现代隧道技术,2017,54(4):97-106.

[47] 曾彬,黄达,彭念,陈福勇. 单圆和异形盾构隧道施工引起土体位移计算的类随机介质理论方法[J]. 岩石力学与工程学报,2018,37(S2):4356-4366.

[48] 张治国,师敏之,张成平,等. 类矩形盾构隧道开挖引起邻近地下管线变形研究[J]. 岩石力学与工程学报,2019,38(4):852-864.

[49] 曹利强,张顶立,房倩,等. 软硬不均地层中盾构施工引起的地层隆沉预测[J]. 岩石力学与工程学报,2019,38(3):634-648.

[50] 曹利强. 盾构掘进影响下复合成层地层及环境的力学响应及其控制[D]. 北京交通大学,2020.

[51] 杨鹤. 厚壁柱/球形小孔扩张与收缩问题弹塑性分析及工程应用研究[D]. 山东大学,2021.

[52] 高新慰. 隧道开挖对邻近桩基承载力及沉降影响研究[D]. 中国矿业大学,2020.

[53] Ou, C.Y., Hwang, R.N., Lai, W.J. (1998). Surface settlement during shield tunnelling at CH218 in Taipei [J]. Canadian Geotechnical Journal, 35(1):159-168.

[54] Möller, S. (2006). Tunnel induced settlements and structural forces in linings [PhD thesis]. University of Stuttgart.

[55] Zhu, C.H., and Li, N. (2016). Prediction and analysis of surface settlement due to shield tunnling for Xi’an Metro [J]. Canadian Geotechnical Journal, 54(4):529-546.

[56] Lee, K.M., and Rowe, R.K. (1989). Effects of undrained strength anisotropy on surface subsidences induced by the construction of shallow tunnels [J]. Canadian Geotechnical Journal, 26(2):279-291.

[57] Kung, G.T.C., Hsiao, E.C.L., Juang, C.H. (2007). Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements [J]. Canadian Geotechnical Journal, 44(6):726-736.

[58] 方勇,何川. 考虑施工过程的土压平衡式盾构隧道掘进数值分析[J]. 铁道工程学报,2009,26(11):56-60.

[59] Svoboda, T. and Masin, D. (2011). Comparison of displacement field predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays [J]. Geotechnik, 34(2):115-126.

[60] Zhou, B. (2015). Tunnelling induced ground displacements in sand [PhD thesis]. University of Nottingham.

[61] Zhang, Z.X., Liu, C., Huang, X., Kwok, C.Y., Teng, L. (2016). Three-dimensional finite-element analysis on ground responses during twin-runnel construction using the URUP method [J]. Tunnelling and Underground Space Technology, 58:133-146.

[62] Swoboda, G. (1979). Finite element analysis of the new Austrian tunnelling method (NATM) [C]. In Proceedings of the 3rd International Conference on Numerical Methods in Geomechanics, Aachen,2:581-586.

[63] Rowe, R.K., Lo, K.Y., Kack, G.J. (1983). A method of estimating surface settlement above tunnels constructed in soft ground [J]. Canadian Geotechnical Journal, 20(1):11-22.

[64] Addenbrooke, T.I., Potts, D.M., and Puzrin, A.M. (1997). The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction [J]. Geotechnique, 47(3):693-712.

[65] Simpson, B., Atkinson, J.H., Jovicic, V. (1996). The influence of anisotropy on calculations of ground settlements above tunnels [C]. In Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Rotterdam: Balkema, pp. 591-594.

[66] Ghaboussi, J., Ranken, R.R., Karshenas, M. (1978). Analysis of subsidence over soft-ground tunnels [C]. AGARD Conference Proceedings, 182-196.

[67] Finno, R.J. and Clough, G.W. (1985). Evaluation of soil response to EPB shield tunnelling [J]. Journal of Geotechnical Engineering, 111(2):157-173.

[68] Bernat, S. and Cambou, B. (1998). Soil-structure interaction in shield tunnelling in soft soil[J]. Computers and Geotechnics, 22(3/4):221-242.

[69] 易宏伟,孙钧. 盾构施工对软粘土的扰动机理分析[J]. 同济大学学报,1999,3:24-27.

[70] Abu-farsakh, M.Y. and Voyiadjis, G.Z. (1999). Computational model for the simulation of the shield tunneling process in cohesive soils [J]. Internationl Journal for Numerical and Analytical Methods in Geomechanics, 23(1):23-44.

[71] Shin, J.H. and Potts, D.M. (2002). Time-based two-dimensional modelling of NATM tunnelling [J]. Canadian Geotechnical Journal, 39:710-724.

[72] Cattoni, E., Miriano, C., Boco, L., et al. (2016). Time-dependent ground movements induced by shield tunneling in soft clay: a parametric study [J]. Acta Geotechnica, 11(6):1-15.

[73] Guedes, R.J., Santos P.C. (2000). The role of the soil K0 value in numerical analysis of shallow tunnels [C]. Proc. Int. Symp. Geotechnical Aspects of Underground Construction in Soft Ground, IS-Tokyo’99, Tokyo:379-384.

[74] Lee, G.T.K. and Ng, C.W.W. (2002). Three-dimensional analysis of ground settlements due to tunnelling: role of K0 and stiffness anisotropy [C]. Proc. Int. Symp. On Geotechnical Aspects of Underground Construction in Soft Ground, Toulouse, pp. 627-622.

[75] Dolezalova, M. (2002). Approaches to numerical modelling of ground movements due to shallow tunnelling [C]. Proc. 2nd Int. Conf. on Soil Structure Interaction in Urban Civil Engineering Zurich 2:365-373.

[76] Vermeer, P.A., Bonnier, P.G., Möller, S.C. (2002). On a smart use of 3D-FEM in tunnelling [C]. Proc. 8th Int. Symp. on Numerical Models in Geomechanics – NUMOG VIII, Rome, pp. 361-366.

[77] Franzius, J.N., Potts, D.M., Burland, J.B. (2005). The influence of soil anisotropy and K0 on ground surface movements resulting from tunnel excavation [J]. Geotechnique, 55(3):189-199.

[78] Kivi, A.V., Sadaghiani, M.H., Ahmadi, M.M. (2012). Numerical modelling of ground settlement control of large span underground metro station in Tehran Metro using Central Beam Column (CBC) structure [J]. Tunnelling and Underground Space Technology, 28:1-9.

[79] Mooney, M., Grasmick, J., Kenneally, B., Fang, Y. (2016). The role of slurry TBM parameters on ground deformation: Field results and computational modelling [J]. Tunnelling and Underground Space Technology, 57:257-264.

[80] Michael, K., Litsas, Dimitris, L., Ioannis, V., Petros, F. (2017). Development of a 3D finite element model for shield EPB tunnelling [J]. Tunnelling and Underground Space Technology, 65:22-34.

[81] Hu, X.Y., He, C., Lai, X.H., Walton, G., Fu, W., Fang, Y. (2020). A DEM-based study of the disturbance in dry sandy ground caused by EPB shield tunnelling [J]. Tunnelling and Underground Space Technology, 101:103410.

[82] Lai, J.X., Zhou, H., Wang, K., Qiu, J.L., Wang, L.X., Wang, J.B., Feng, Z.H. (2020). Shield-driven induced ground surface and Ming Dynasty city wall settlement of Xi’an metro [J]. Tunnelling and Underground Space Technology, 97.

[83] Lee, K.M. and Rowe, R.K (1991). An analysis for three-dimensional ground movements: the Thunder Bay tunnel [J]. Canadian Geotechnical Journal, 28:25-41.

[84] Rowe, R.K and Lee, K.M. (1992). An evaluation of simplified techniques for estimating three-dimensional undrained ground movements due to tunneling in soft soils [J]. Canadian Geotechnical Journal, 29:39-52.

[85] 刘洪洲,孙钧. 软土隧道盾构推进中地面沉降影响因素的数值法研究[J]. 现代隧道技术,2001(06):24-28.

[86] 张志强,何川. 深圳地铁隧道邻接桩基施工力学行为研究[J]. 岩土工程学报,2003,25(2):204-207.

[87] 于宁,朱合华. 盾构施工仿真及其相邻影响的数值分析[J]. 岩土力学,2004,25(2):292-296.

[88] 张海波,殷宗泽,朱俊高. 地铁隧道盾构法施工过程中地层变为的三维有限元模拟[J]. 岩石力学与工程学报,2005,24(5):755-760.

[89] Kasper, T. and Meschke, G. (2006). On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling [J]. Tunnelling and Underground Space Technology, 21:160-171.

[90] 孙统立,张庆贺,胡向东,韦良文. 双圆盾构施工土体沉降有限元数值模拟[J]. 同济大学学报(自然科学版),2008,36(4):466-471.

[91] Nagel, F. and Meschke, G. (2011). Grout and bentonite flow around a TBM: Computational modeling and simulation-based assessment of influence on surface settlements [J]. Tunnelling and Underground Space Technology, 26:445-452.

[92] Lambrughi, A., Medina, Rodriguez, L., Castellanza, R. (2012). Development and validation of a 3D numerical model for TBM-EPB mechanized excavations [J]. Computers and Geotechnics, 40:97-113.

[93] Comodromos, E., Papadopoulou, M., Konstantinidis, G. (2014). Numerical assessment of subsidence and adjacent building movements induced by TBM-EPB tunneling [J]. Journal of Geotechnical and Geoenvironmental Engineering, 140:4014061.

[94] 刘方,崔建,徐汪豪,高峰. 大直径泥水平衡盾构浅覆土始发地表沉降特性[J]. 铁道工程学报,2018,35(12):36-40+69.

[95] 刘方,高峰,徐汪豪. 大直径泥水平衡盾构浅覆土始发数值分析[J]. 铁道标准设计,2018,63(02):104-109.

[96] Tao, X., Chen, R.P., Wu, H.N., et al. (2019). Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle [J]. Tunnelling and Underground Space Technology, 89:78-90.

[97] 张孟喜,张靖,吴应明,加武荣,韩佳尧,周力军. 全风化岩层中双线盾构上穿近邻地铁隧道影响分析[J]. 土木工程学报,2019,52(09):100-108.

[98] Cui, J., Fang, Y., Xu, G.Y. et al. (2020). Transportation performance of large-sized pebbles in slurry circulation system: A laboratory study [J]. Arabian Journal for Science and Engineering, 1-12.

[99] Fang, Y., Cui, J., Wanatowski, D., Nikitas, N., Yuan, R., He, Y. (2022). Subsurface settlements of shield tunneling predicted by 2D and 3D constitutive models considering non-coaxiality and soil anisotropy: a case study [J]. Canadian Geotechnical Journal, 59: 424-440.

[100] Casagrande, A. and Carillo, N. (1944). Shear failure of anisotropic materials [J]. Journal of Boston Society of Civil Engineers, 31(4):74-81.

[101] 袁冉,杨文波,余海岁,周波. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报,2018,40(4):673-680.

[102] Phillips, A.B. and May, P.H. (1967). A form of anisotropy in granular media [J]. Special Task Repot.

[103] Arthur, J.R.F., and Menzies, B.K. (1972). Inherent anisotropy in a sand [J]. Geotechnique, 22(1):115-118.

[104] Parkin, A.K., Gerrard, C.M. and Willoughby, D.R. (1968). Discussion on deformation of sand in shear [J]. J. Soil Mech. Found. Div. 94(1):336-340.

[105] Lade, P.V. and Duncan, J.M. (1973). Cubic triaial tests on cohesionless soil [J]. J. Soil Mech. Found. Div. 99(10):793-812.

[106] Lade, P.V. (1978). Cubic triaxial apparantus for soil testing [J]. G eotechnical Testing Journal, 14(3):231-246.

[107] Abelev, A.V. and Lade, P.V. (2003). Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding [J]. Journal of Engineering mechanics, 129(2):160-166.

[108] Kumruzzaman, M.D. and Yin, J.H. (2010). Influence of principal stress direction on the stress-strain-strengh behaviour of completely decomposed granite [J]. Facta universitatis-series: Architecture and Civil Engineering, 8(1):79-90.

[109] Oda, M. (1972a). Initial fabrics and their relations to mechanical properties of granular material [J]. Soil and Foundation, 12(1):17-36.

[110] Oda, M., Koishikawa, I. and Higuchi, T. (1978). Experimental study of anisotropic shear strength of sand by plane strain test [J]. Soil and Foundations, 18(1):25-38.

[111] Cundall, P.A. and Strack, O.D.L. (1979). A discrete numerical model for granular assemblies [J]. Geotechnique, 29(1):47-65.

[112] Li, X. and Yu, H.S. (2009). Influence of loading direction on the behavior of anisotropic granular materials [J]. International Journal of Engineering Science, 47(11):1284-1296.

[113] Bishop, A.W. (1966). The strength of soils as engineering materials [J]. Geotechnique, 16(2):91-128.

[114] Arthur, J.R.F., Chua, K.S. and Dunstan, T. (1977). Induced anisotropy in a sand [J]. Geotechnique, 27(1):13-30.

[115] Roscoe, K.H. (1970). The influence of strains in soil mechanics [J]. Geotechnique, 20(2):129-170.

[116] Oda, M. (1972b). The mechanism of fabric changes during compressional deformation of sand [J]. Soil and Foundation, 12(2):1-18.

[117] Lu, D.C., Liang, J.Y., Du, X.L., Wang, G.S., Shire, T. (2019). A novel transversely isotropic strength criterion for soils based on a mobolised plane approach [J]. Geotechnique, 69(3): 234-250.

[118] Tatsuoka, F., Nakamura, S., Huang, C., Tani, K. (1990). Strength anisotropy and shear band direction in plane strain tests of sand [J]. Soils and Foundations, 30(1):35-54.

[119] Lam, W. and Tatsuoka, F. (1988). Effects of initial anisotropic fabric and σ2 on strength and deformation charactieristics of sand [J]. Soils and Foundations, 28(1):89-106.

[120] Kirkgard, M.M. and Lade, P.V. (1993). Anisotropic three-dimensional behavior of a normally consolidated clay [J]. Canadian Geotechnical Journal, 30(5):848-858.

[121] Nishimura, S., Minh, N.A., Jardine, R.J. (2007). Shear strength anisotropy of natural London Clay [J]. Geotechnique, 57(1):49-62.

[122] Lade, P.V., Rodriguez, N.M., Van Dyck, E.J. (2014). Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 140(2):112.

[123] Yang, L.T., Li, X., Yu, H.S., Wanatowski, D. (2016). A laboratory study of anisotropic geomaterials incorporating recent micro-mechanical understanding [J]. Acta Geotechnica, 11(5):1111-1129.

[124] Ochiai, H. and Lade, P.V. (1983). Three-dimensional behaviour of sand with anisotropic fabric [J]. Journal of Geotechnical Engineering, 109:1313-1328.

[125] Rodriguez, N.M. and Lade, P.V. (2013). True triaxial tests on crossanisotropic deposits of fine Nevada sand [J]. International Journal of Geomechanics, 13(6):779-793.

[126] 姚仰平,祝恩阳. 横观各向同性土的简明破坏机制解释[J]. 岩土力学,2014,35(02):328-333.

[127] Lv, X.L., Huang, M.S., Andrade, J.E. (2016). Strength criterion for cross-anisotropic sand under general stress conditions [J]. Acta Geotechnica, 11:1339-1350.

[128] 曹威,王睿,张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报,2016,38(11):2026-2032.

[129] 王者超,宗智,乔丽苹,李崴,刘杰. 横观各向同性岩石蠕变性质与本构模型研究[J]. 岩土工程学报,2018,40(07):1221-1229.

[130] 郭楠. 非饱和土的增量非线性横观各向同性本构模型研究[D]. 兰州理工大学,2018.

[131] Wang, Z., Zong, Z., Qiao, L., Li, W. (2018). Elastoplastic model for transversely isotropic rocks. International Journal of Geomechanics, 18(2):1-15.

[132] 田雨,姚仰平,路德春,杜修力. 基于修正应力法的横观各向同性摩尔-库仑准则及被动土压力公式[J]. 岩土力学,2019,40(10):3945-3950.

[133] 曲广琇,任鹏. 基于双屈服条件准则的横观各向同性本构模型研究及其数值模拟[J]. 铁道科学与工程学报,2019,16(06):1448-1453.

[134] 路德春,韩佳月,梁靖宇,田雨,杜修力. 横观各向同性黏土的非正交弹塑性本构模型[J]. 岩石力学与工程学报,2020,39(04):793-803.

[135] Liang, J.Y., Lu, D.C., Du, X.L., Ma, C., Gao, Z.W., Han, J.Y. (2021). A 3D non-orthogonal elastoplastic constitutive model for transversely isotropic soil [J]. Acta Geotechnica: 1-18.

[136] 徐国文. 层状千枚岩地层隧道稳定性分析[D]. 西南交通大学,2017.

[137] 宗智. 板岩横观各向同性力学特性与本构模型研究[D]. 山东大学,2017.

[138] 赵东雷. 基于横观各向同性损伤模型的隧道围岩稳定性分析[D]. 贵州大学,2019.

[139] 周鹏发. 千枚岩各向异性本构模型开发及其在隧道工程中的应用[D]. 西南交通大学,2019.

[140] Amerasinghe, S.F. and Parry, R.H. (1975). Anisotropy in heavily overconsilidated kaolin [J]. Journal of Geotechnical and Geoenvironmental Engineering, 101(12):1277-1293.

[141] Ko, H.Y. and Sture, S. (1981). State of the art: Data reduction and application for analytical modeling [J]. Laboratory Shear Strength of Soil, ASTM STP 740:329-386.

[142] Mitchell, R. (1972). Some deviations from isotropy in a lightly overconsolidated clay [J]. Geotechnique, 22(3):450-467.

[143] Prevost, J.H. (1978). Plasticity theory for soil stress-strain behavior [J]. Journal of the Engineering Mechanics Division, 104(5):1177-1194.

[144] Hashiguchi, K. (1979). Constitutive equations of granular media with an anisotropic hardening [C]. in Proc. 3rd Int. Conf. Numer. Meth. Geomech., Aachen. AA Balkema, Rotterdam:428-439.

[145] Prager, W. and Drucker, D.C. (1952). Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics, 10(2):157-165.

[146] Shield, R.T. (1953). Mixed boundary value problems in soil mechanics [J]. Quarterly of Applied Mathematics, 11(1):61-75.

[147] Hill, R. (1950). A theoretical investigation of the effect of specimen size in the measurement of hardness [J]. Philosophical Magazine, 41(319):745-753.

[148] 沈珠江. 土的弹塑性应力应变关系的合理形式[J]. 岩土工程学报,1980,2(002):11-19.

[149] 沈珠江. 软土地基固结变形的弹塑性分析[J]. 中国科学:数学物理学天文学技术科学,1985(11):87-98.

[150] Roscoe, K.H., Bassett, R.H., Cole, E.R. (1967). Principal axes observed during simple shear of a sand [C]. Proceedings of the Geotechnique, 231-237.

[151] Arthur, M.A. and Fischer, A.G. (1977). Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy I. Lithostratigraphy and sedimentology[J]. Geological Society of America Bulletin, 88(3):367-389.

[152] Yu, H.S. and Yuan, X. (2006). On a class of non-coaxial plasticity models for granular soil [C]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2067):725-748.

[153] Yang, L.T. (2013). Experimental study of soil anisotropy using hollow cylinder testing. PhD thesis, University of Nottingham, England.

[154] Drescher, A., De, Jesselin, De, Jong, G. (1972). Photoelastic verification of a mechanical medel for the flow of a granular material [J]. Journal of Mechanics and Physics of Solids, 20:337-351.

[155] Oda, M. and Konishi, J. (1974). Microscopicdeformation mechanism of granular material in simple shear [J]. Soils and Foundations, 14(4):25-38.

[156] Ishihara, K. and Towhata, J. (1983). Sand response to cyclic rotation of principal stress direction as induced by wave loads [J]. Soils and Foundations, 23:11-16.

[157] Symes, MJPR., Gens, A., Hight, D.W. (1984). Undrained anisotropy and principal stress rotation in saturated sand [J]. Geotechnique, 34(1):11-27.

[158] Pradel, D., Ishihara, K., Gutierrez, M. (1990). Yielding and flow of sand under principal axis rotation [J]. Soils and Foundations, 30(1):87-99.

[159] Gutierrez, M., Ishihara, K., Towhata, I. (1991). Flow theory for sand during rotation of principal stress direction [J]. Soils and Foundations, 31(4):121-132.

[160] Jore, H.A., Lanier, J., Fahey, M. (1998). Deformation of granular material due to rotation of principal axis [J]. Geotechnique, 48(5):605-619.

[161] Jiang, M.J., Harris, D., and Yu, H.S. (2005). Kinematic models for non-coaxial granular materials: Part Ⅰ and Part Ⅱ[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 29:643-689.

[162] 冯大阔,侯文峻,张建民. 粗粒土与结构接触面切向变形非共轴现象的试验研究[J]. 岩土工程学报,2011,33(07):1066-1071.

[163] 严佳佳,周建,刘正义,龚晓南. 主应力轴纯旋转条件下黏土弹塑性变形特性[J].岩石力学与工程学报,2014,33(S2):4350-4358.

[164] 杜子博,钱建固,黄茂松. 考虑主应力轴旋转效应的交通荷载下饱和软黏土变形特性试验研究[J]. 岩石力学与工程学报,2016,35(05):1031-1040.

[165] 陈进美,郭林,蔡袁强,陈靖宇. 排水条件下原状软黏土各向异性和非共轴特性试验研究[J]. 岩石力学与工程学报,2016,35(S1):3291-3298.

[166] 熊焕,郭林,蔡袁强. 主应力轴变化下非共轴对砂土剪胀特性影响[J]. 岩土力学,2017,38(01):133-140.

[167] 伍婷玉. 交通荷载引起主应力轴旋转下粘土应变累积及非共轴特性[D]. 浙江大学,2019.

[168] Cai, Y.Y., Yu, H.S., Wanatowski, D., Li, X. (2013). Noncoaxial behavior of sand under various stress paths [J]. Journal of Geotechnical and Geoenviornmental Engineering, 139(8):1381-1395.

[169] Arthur, J.R.F., Del C, R.I.J., Dunstan, T., Chua, K.S. (1980). Principal stress rotation: a missing parameter [J]. Journal of the Geotechnical Engineering Division, 106(4):419-433.

[170] Airey, D.W., Budhu, M., Wood, D.M. (1985). Some aspects of the behavior of soils in simple shear. Elsevier Applied Science Publishers.

[171] Yu, H.S. (2006). Plasticity and Geotechnics [B], Springer, USA.

[172] Saada, A.S. and Baah, A.K. (1967). Deformation and failure of a cross anisotropic clay under combined stresses [C]. In: Proceeding of the Third Pan-American Conference on Soil Mechanics ana Foundation Engineering, Caracs 1:67-88.

[173] Lade, P.V. and Duncan, J.M. (1975). Elastoplastic stress-strain theory for cohesionless soil [J]. Journal of the Geotechnical Engineering Division, 101(10):1037-1053.

[174] Hight, D.W., Gens, A., Symes, M.J. (1983). The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soil [J]. Geotechnique, 33(4):355-383.

[175] Cai, Y.Y. (2010). An experimental study of non-coaxial soil behavior using hollow cylinder testing. PhD thesis, University of Nottingham.

[176] Zhang, L. (2003). The behavior of granular material in pure shera, direct shear and simple shear. PhD thesis, Aston University.

[177] Ai, J., Langston, P.A., Yu, H.S. (2014). Discrete element modelling of material non-coaxiality in simple shear flows [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 38(6):6115-635.

[178] 李博,蔡袁强,郭林. 三维空心扭剪试验的颗粒流模拟关键技术研究[J]. 岩石力学与工程学报,2014,33(S1):3150-3156.

[179] Li, B., Zhang, F.S., Marte, G. (2015). A numerical examination of the hollow cylindrical torsional shear test using DEM [J]. Acta Geotechnica, 10:449-467.

[180] 史旦达,杨晨捷,薛剑峰,王威. 颗粒材料定向剪切特性的空心圆柱离散元模拟[J]. 水利学报,2018,49(8):917-925.

[181] Pouragha, M., Kruyt, N.P., Wan, R. (2021). Non-coaxial Plastic Flow of Granular Materials through Stress Probing Analysis [J]. International Journal of Solids and Structures.

[182] Zhang, L. and Thornton, C. (2002). DEM simulation of the direct shear tests [C]. Proceedings of the 15th ASCE Engineering Mechanics Conference, New York, U.S.A.

[183] Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I. (2005). Role of anisotropy in the elastoplastic response of a polygonal packing [J]. Physical Review, E71:051304.

[184] Yu, H.S. (2008). Non-coaxial theories of plasticity for granular materials [C]. The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp. 361-378.

[185] 扈萍,黄茂松,钱建固,吕玺林. 砂土非共轴特性的本构模拟[J]. 岩土工程学报,2009,31(5):793-798.

[186] 黄茂松,孙海忠,钱建固. 粗粒土的非共轴性及其离散元数值模拟[J]. 水利学报,2010,41(2):172-181.

[187] 杨蕴明,柴华友,韦昌富. 非共轴本构模型的数值计算问题[J]. 岩土力学,2010,31(S2):373-377.

[188] 罗强,栾茂田,杨蕴明,等. 非共轴本构模型在桶形基础地基承载力数值计算中的应用[J]. 大连理工大学学报,2012,52(4):553-558.

[189] Harris, D. (1993). Constitutive equations for planar deformations of rigid-plastic materials [J]. Journal of the Mechanics and Physics of Solids, 41(9):1515-1531.

[190] Kolymabas, D. (1991). An outline of plasticity [J]. Archive Applied Mechanics, 61:144-151.

[191] Rudnicki, J.W. and Rice, J.R. (1975). Conditions for localization of deformation in pressure-sensitive dilatant materials [J]. Journal of the Mechanics and Physics of Solids, 23:371-394.

[192] Li, X.S. and Dafalia, Y.F. (2004). A constitutive framework for anisotropic and including non-proportional loading [J]. Geotechnique, 54(1):41-55.

[193] Gutierrez, M., Ishihara, K., Towhata, I. (1993). Model for the deformation of sand during rotation of principal stress directions [J]. Soils and Foundations, 33(3):105-117.

[194] Hashiguchi, K. (1977). Isotropic hardening theory of granular media [J]. Proc. JSCE, 227:45-60.

[195] Hashiguchi, K. and Tsutsumi, S. (2001). Elastoplastic constitutive equation eith tangential stress rate effect [J]. Intrenational Journal of Plasticity, 17(1):117-145.

[196] Hashiguchi, K. and Tsutsumi, S. (2003). Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect [J]. Intrenational Journal of Plasticity, 19(10):1651-1677.

[197] Tsutsumi, S. and Hashiguchi, K. (2005). General non-proportional loading behavior of soils [J]. International Journal of Plasticity, 21(10):1941-1969.

[198] 钱建固,黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报,2006(06):1259-1264.

[199] Yuan, X. (2005). Non-coaxial plasticity for granular materials. PhD thesis, University of Nottingham, England.

[200] Yu, H.S. and Yuan, X. (2006). On a class of non-coaxial plasticity models for granular soil [C]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2067):725-748.

[201] Yang, Y. and Yu, H.S. (2006a). Numerical simulations of simple shear with non-coaxial soil models [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 30(1):1-19.

[202] Yang, Y. and Yu, H.S. (2006b). Application of a non-coaxial soil model in shallow foundations [J]. Geomechanics and Geoengineering: An International Journal, 1(2):139-150.

[203] Yang, Y. and Yu, H.S. (2010a). Finite element anaylasis of anchor plates using non-coaxial models [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2(2):178-187.

[204] Yang, Y. and Yu, H.S. (2010b). Numerical aspects of non-coaxial model implementations [J]. Computers and Geotechnics, 37(1):93-102.

[205] 黄茂松,孙海忠,钱建固. 粗粒土的非共轴性及其离散元数值模拟[J]. 水利学报,2010,41(2):172-181.

[206] 杨蕴明,柴华友,韦昌富. 非共轴本构模型的数值计算问题[J]. 岩土力学,2010,31(S2):373-377.

[207] 李学丰,孔亮,黄茂松. 料特性相关塑性位势理论[J]. 土工程学报,13,35(09):1722-1729.

[208] Yuan, R. (2015). A non-coaxial theory of plasticity for soil with an anisotropic yield criterion. PhD thesis, University of Nottingham, England.

[209] 田雨. 基于各向异性变换应力法的UH模型及其应用[D]. 北京航空航天大学,2018.

[210] 陈洲泉,黄茂松. 基于状态相关本构模型的砂土非共轴特性模拟[J]. 岩土力学,2017,38(07):1959-1966.

[211] 陈洲泉,黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报,2018,40(02):243-251.

[212] Yuan, R., Yu, H.S., Yang, D.S., Hu, N. (2018). On a fabric evolution law incorporating the effects of b-value [J]. Computers and Geotechnics, 105(JAN.):142-154.

[213] Yuan, R., Yu, H.S., Zhang, J.R., Fang, Y. (2019). Noncoaxial Theory of Plasticity Incorporating Initial Soil Anisotropy [J]. International Journal of Geomechanics, 19(12).

[214] Mair, R., Taylor, R. (1999). Theme lecture: Bored tunneling in the urban environment [C]. of XIV ICSMFE, 131:2353-2358.

[215] Atikinson, J., Brown, E., Potts, D. (1975). Collapse of shallow unlined tunnels in dense sand [J]. Tunnels and Tunneling, 7(3):81-87.

[216] Potts, D.M. (1976). Behaviour of Lined and Unlined Tunnels in Sand. Ph. D. thesis, University of Cambridge.

[217] Hagiwara, T., Grant, R.J., Calvello, M., Taylor, R.N. (1999). The effect of overlying strata on the distribution of ground movements induced by tunnelling in clay. Soils and Foundations, 39(3):63–73.

[218] Loganathan, N., Poulos, H., Stewart, D. (2000). Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique, 50(3):283–294.

[219] Jacobsz, S. W. (2003). The effects of tunnelling on piled foundations. Ph. D. thesis, University of Cambridge.

[220] Vorster, T., Klar, A., Soga, K., Mair, R. (2005). Estimating the effects of tunneling on existing pipelines. Journal of Geotechnical and Geoenvironmental Engineering, 131(11): 1399–1410.

[221] Ng, C.W.W., Lu, H., Peng, S.Y. (2013a). Three-dimentional centrifuge modelling of the effects of twin tunnelling on an existing pile [J]. Tunnelling and Underground Space Technology, 35:189-199.

[222] Ng, C.W.W., Boonyarak, T., Main, D. (2013b). Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels [J]. Canadian Geotechnical Journal, 50.

[223] Shi, J.W., Yang, Y., Ng, C.W.W. (2016). Three-dimensional centrifuge modeling of ground and pipeline response to tunnel excavation [J]. Journal of Geotechnical and Geoeenvironmental Engineering, 142(11): 04016054.

[224] Marshall, A.M., Franza, A. (2017). Discussion of observation of gournd movement with existing pile groups due to tunneling in sand using centrifuge modelling by Ittichai Boonsiri and Jiro Takmura [J]. Geotechnical and Geological Engineering, 35(1):535-539.

[225] Ritter, S., Giardina, G., DeJong, M.J., Mair, R.J. (2017). Centrifuge modelling of building response to tunnel excavation [J]. International Journal of Physical Modelling in Geotechnics, 18(3):1-16.

[226] Marshall, A.M. (2009). Tunnelling in sand and its effect on pipelines and piles [D]. Ph.D. thesis. University of Cambridge.

[227] Farrell, R.P. (2010). Tunnelling in sands and the response of buildings [D]. Ph.D. thesis. University of Cambridge.

[228] Williamson, M. (2014). Tunnelling effect on bored piles in clay [D]. Ph.D. thesis. University of Cambridge.

[229] Zhou, B., Marshall, A.M., Yu, H.S. (2014). The effect of relative density on greenfield settlements above tunnels in sands [C]. In: Geoshanghai 2014 – International conference on geotechnical engineering. ASCE, Shanghai, pp. 96-105.

[230] Franza, A. (2016). Tunnelling and its effects on piles and piled structures [D]. Ph.D. thesis. University of Cambridge.

[231] Katoh, Y., Miyake, M., Wada, M. (1998). Ground deformation around shield tunnel [J]. Centrifuge, 98:733-738.

[232] Shahin, H.M., Nakai, T., Zhang, F., Kikumoto, M., Nakahara, E. (2011). Behavior of ground and response of existing foundation due to tunneling [J]. Soils and Foundation, 51(3):395-409.

[233] Song, G., Marshall, A.M., Heron, C. (2018). )A mechanical displacement control model tunnel for simulating eccentric ground loss in the centrifuge. In: 9th International Conference of Physical Modelling in Geotechnics: ICPMG.

[234] Song, G., Marshall, A.M. (2020). Centrifuge modelling of tunnelling induced ground displacements: pressure and displacement control tunnels [J]. Tunnelling and Underground Space Technology, 103:103461.

[235] Song, G., Marshall, A.M. (2021). Centrifuge study on the use of protective walls to reduce tunnelling-induced damage of buildings [J]. Tunnelling and Underground Space Technology, 115:104064.

[236] Yang, W.B. (2011). Physical and numerical modelling of railway induced ground-borne vibration [D]. Ph.D. thesis. University of Cambridge.

[237] Song, G.Y. (2019). The use of protective structures to reduce tunnelling induced damage to buildings [D]. Ph.D. thesis. University of Cambridge.

[238] Xu, J.M. (2020). Tunnelling effects on framed buildings [D]. Ph.D. thesis. University of Cambridge.

[239] Hu, L., Shi, J.W., Ng, C.W.W., Lv, Y.R. (2020). Three-dimensional centrifuge modeling of the influence of side-by-side twin tunneling on a piled raft [J]. Tunnelling and Underground Space Technology, 103:103486.

[240] Li, P., Du, S.J., Ma, X.F., Yin, Z.Y., Shen, S.L. (2014). Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel [J]. Tunnelling and Underground Space Technology, 42:56-66.

[241] Ma, S.K. Shao, Y., Liu, Y., Jiang, J., Fan, X.L. (2017). Responses of pipeline to side-by-side twin tunnelling at different depths: 3D centrifuge tests and numerical modelling [J]. Tunnelling and Underground Space Technology, 66:157-173.

[242] 丁菲. 水下泥水盾构隧道开挖面稳定离心模型试验研究[D]. 北京交通大学,2018.

[243] Franza, A., Marshall, A.M. (2018). Centrifuge modeling study of the response of piled structures to tunneling [J]. Journal of Geotechnical and Geoenvironmental Engineering, 144(2).

[244] Franza, A., Marshall, A.M. (2019). Centrifuge and real-time hybrid testing of tunneling beneath piles and piled buildings [J]. Journal of Geotechnical and Geoenvironmental Engineering, 145(3): 04018110.1-04018110.10.

[245] Wang, J., Liu, H., Liu, H., Zou, Y. (2019). Centrifuge model study on the seismic responses of shield tunnel [J]. Tunnelling and Underground Space Technology, 92: 103036.

[246] Weng, X., Sun, Y., Yan, B., Niu, H., Zhou, S. (2020). Centrifuge testing and numerical modeling of tunnel face stability considering longitudinal slope angle and steady state seepage in soft clay [J]. Tunnelling and Underground Space Technology, 101(2): 103406.

[247] Meng, F.Y., Chen, R.P., Xu, Y., Wu, H.N. Li, Z. (2021a). Centrifuge modeling of effectiveness of protective measures on existing tunnel subjected to nearby excavation [J]. Tunnelling and Underground Space Technology, 112(2): 103880.

[248] Meng, F.Y., Chen, R.P., Liu, S.L., Wu, H.N. (2020b). Centrifuge modeling of ground and tunnel responses to nearby excavation in soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 147(3): 04020178.

[249] 许原骑,单治钢,甘鹏路,刘世明,张转转,侯永茂. 地铁并行隧道掘进对近接群桩基础的影响研究[J]. 岩石力学与工程学报,2021,40(S1):2935-2944.

[250] Selby, A.R. (1988). Surface movements caused by tunnelling in two-layer soil [J]. Engineering Geology of Underground Movements, 5:71-77.

[251] 黄茂松,张治国,王卫东. 基于位移控制边界单元法盾构隧道开挖引起分层土体变形分析[J]. 岩石力学与工程学报,2009,28(12):2544-2553.

[252] 刘联伟. 复合地层中盾构法建设地铁地表沉降规律研究[D]. 徐州,中国矿业大学,2009.

[253] 资谊,陈强,章荣军,郑俊杰. 复合地层中隧道开挖面支护压力对地层变形的影响[J]. 华中科技大学学报(城市科学版),2010,27(4):36-41.

[254] 郭乐. 砂-粘土复合地层盾构速调地表沉降规律研究[J]. 现代隧道技术,2017,5(376):130-137.

[255] Zhao, C.Y., Christoph, S., Thomas, B., et al. (2019). Response of building to shallow tunnel excavation in different types of soil [J]. Computers and Geotechnics, 115:1-20.

[256] 邓崴,潘建平,曾雅钰琼. 砂黏复合地层盾构隧道施工地表横向沉降分析[J].科学技术与工程,2019,19(18):271-275.

[257] 李涛,崔远,曹英杰,季媛,郭慧敏. 岩-土复合地层暗挖隧道施工引起地表沉降计算方法[J]. 中国铁道科学,2020,41(2):73-80.

[258] 程烨,施静康,张东明,黄宏伟. 复合地层中超大直径泥水盾构掘进引起地表沉降的3D数值模拟分析[J]. 中国市政工程,2022,4(223):55-58.

[259] 齐永洁,朱建才,周建,李东泰,魏纲. 土岩复合地层中盾构施工引起的地表位移预测[J]. 岩土工程学报,2022:1-10.

[260] Lings, M.L., Penningtonf, D.S., Nash, D.F.T. (2000). Anisotropic stiffness parameters and their measurement in a stiff natural clay [J]. Geotechnique, 50:109-125.

[261] Yu, H.S., Wang, J. (2014). Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads [J]. International Journal of Solids and Structures, 38:331-348.

[262] Zymnis, D.M., Chatzigiannells, I., Whittle, A.J. (2013). Effect of anisotropy in ground movements caused by tunnelling [J]. Geotechnique, 63(13):1083-1102.

[263] Masin, D. and Rott, J. (2014). Small strain stiffness anisotropy of natural sedimentary clays: review and a model [J]. Acta Geotechnica, 9:299-312.

[264] Graham, J. and Houlsby, G.T. (1983). Anisotropic elasticity of a natural clay [J]. Geotechnique, 33:165-180.

[265] 张学言. 岩土塑性力学[M]. 人民交通出版社,1993.

[266] Nayak, G.C., Zienkiewicz, O.C. (1972). Convenient form of stress invariants for plasticity [J]. Journal of the Structural Division, ASCE., 98:949-954.

[267] Abbo, A.J. (1997). Finite element algorithms for elastoplasticity and consolidation [D]. PhD thesis, University of Newcastle Upon Tyne.

[268] Booker, J., and Davis, E. (1972). A general treatment of plastic anisotropy under conditions of plane strain [J]. Journal of the Mechanics and Physics of Solids, 20(4): 239-250.

[269] Qian, J.G., Yang, J. Huang, M.S. (2008). Three-dimensional noncoaxial plasticity modelling of shear band formation in geomaterials [J]. Journal of Engineering Mechanics, 134(4):322-329.

[270] Gutierrez, M., Ishihara, K. (2000). Non-coaxiality and energy dissipation in granular materials [J]. Journal of the Japanese Geotechnical Society Soils and Foundation, 40(2):49-59.

[271] Papamichos, E. and Vardoulakis, I. (1995). Shear band formation in sand according to non-coaxial plasticity model [J]. Geotechnique, 45(4):649–661.

[272] Yu, H.S. and Yuan, X. (2006). On a class of non-coaxial plasticity models for granular soils [C]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2067):725–748.

[273] Spencer, A.J.M. (1964). A theory of the kinematics of ideal soils under plane strain conditions [J]. Journal of the Mechanics and Physics of Solids, 12(5):337–351.

[274] Harris, D. (1995). A unified formulation for plasticity models of granular and other Materials [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 450(1938):37–49.

[275] 严佳佳. 主应力连续旋转下软粘土非共轴变形特性试验和模型研究[D].浙江大学,2014.

[276] 杨彦豪. 软粘土非共轴特性的试验研究[D]. 浙江大学,2014.

[277] Gutierrez, M., Wang, J., Yoshimine, M. (2009). Modeling of the simple shear deformation of sand: effects of principal stress rotation [J]. Acta Geotechnica, 4(3):193-201.

[278] Sloan, S.W., Abbo, A.J., Sheng, D.C. (2001). Refined explicit integration of elastoplastic models with automatic error control [J]. Engineering Computations, 18(1/2):121-194.

[279] Sloan, S.W., Booker, J.R. (1986). Removal of Singularities in Tresca and Mohr-Coulomb Yield Functions [J]. Communications in Applied Numerical Methods, 2(2).

[280] Zienkiewicz, O.C., Pande, G.N. (1977). Some useful forms of isotropic yield surfaces for soil and rock mechanics [J]. Finite Element in Geomechanics.

[281] 罗强. 非共轴本构模型的数值应用及离心机试验研究[D]. 大连理工大学,2013.

[282] 贾善坡. Boom Clay泥岩渗流应力损伤耦合流变模型、参数反演与工程应用[D]. 中国科学院研究生院(武汉岩土力学研究所),2009.

[283] 方勇. 土压平衡式盾构掘进过程对地层的影响与控制[D]. 西南交通大学,2007.

[284] O’Reilly, M.P. and New, B.M. (1982). Settlements above tunnels in the United Kingdom-their magnitude and prediction [C]. Proc. Tunnelling 82, Institution of Mining and Metallurgy, London, 173-181.

[285] 韩煊. 隧道施工引起地层位移及建筑物变形预测的实用方法研究[D]. 西安理工大学,2006.

[286] 郭建宁. 基于盾构地层损失理论的地表沉降分析及控制研究[D]. 西南交通大学,2017.

[287] 胡中雄. 土力学与环境土工学[M]. 上海:同济大学出版社,1997.

[288] Pruska, L. (1978). At-rest lateral earth pressure coefficient of a granular medium [J]. Soil Mechanics and Foundation Engineering, 56-61.

[289] 李广信,张丙印,于宝贞. 土力学(第二版)[M] . 北京:清华大学出版社,2013.

[290] Wang, J.X., Fu, H.X., Zhu, Y.F., Tang, Y.Q., Yang, P. (2010). Advance in calculation of subsidence caused by shield tunnel based on strata loss [J]. Chinese Journal of Underground Space and Engineering, 6(01):112-119+150.

[291] Torres, C.C. and Fairhurst, C. (2000). Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion [J]. Tunnelling and Underground Space Technology, 15(2):187-213.

[292] Fahimifar, A. and Ranjbarnia, M. (2009). Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method [J]. Tunnelling and Underground Space Technology, 24(4):363-375.

[293] Addenbrooke, T.I. and Potts, D.M. (2001). Twin tunnel interaction: surface and surface effects [J]. International Journal of Geomechanics. 1(2):249-271.

[294] 姜忻良,李林,袁杰,殷加顺. 深层地铁盾构施工地层水平位移动态分析[J]. 岩土力学,2011,32(04):1186-1192.

[295] 贾勇. 盾构施工地层变形实测与三维数值模拟及参数分析[D]. 天津大学,2010.

[296] 汪洋. 砂卵石地层盾构施工对邻近结构物的影响研究[D]. 西南交通大学,2014.

[297] Thomas, K., Gunther, M. (2004). A 3D finite element simulation model for TBM tunnelling in soft ground [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 28:1441-1460.

[298] Yimsiri, S. and Soga, K. (2011). Cross-anisotropic elastic parameters of two natural stiff clays [J]. Geotechnique, 61:809-814.

[299] Yu, S. and Dakoulas, P. (1993). General stress-dependent elastic moduli for cross-anisotropic soils [J]. Journal of Geotechnical Engineering, 119:1568-1586.

[300] Hoque, E., Tatsuoka, F., Sato, T. (1996). Measuring anisotropic elastic properties of sand using a large triaxial specimen [J]. Geotechnical Testing Journal, 19:411-420.

[301] Jiang, G.L., Tatsuoka, F., Flora, A., Koseki, J. (1997). Inherent and stress-state-induced anisotropy in very small strain stiffness of a sandy gravel [J]. Geotechnique, 47:509-521.

[302] Kuwano, R. and Jardine, R.J. (2002). On the applicability of cross-anisotropic elasticity to granular materials at very small strains [J]. Geotechnique, 52:727-749.

[303] Jamali, N., Veiskarami, M., Chenari, R.J. (2021). An investigation on the settlement of shallow foundations resting on cross-anisotropic soil deposits [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering: 1-22.

[304] Yu, H.S. (1992). Expansion of a thick cylinder of soils [J]. Computers and Geotechnics, 14(1):21-41.

[305] Hai-Sui Yu,周国庆,赵光思,梁恒昌. 岩土介质小孔扩张理论[M]. 科学出版社,2013.

[306] 余海岁,庄培芝. 岩土介质小孔收缩理论及其在隧道工程中的应用[J]. 隧道与地下工程灾害防治,2019,1(04):13-32.

[307] Mair, R.J., Taylor, R.N. (1993). Prediction of clay behaviour around tunnels using plasticity solutions[C]. Predictive Soil Mechanics: Proceedings of the Wroth Memorial Symposium. London: Thomas Telford; 449-463.

[308] Yu, H.S., Rowe, R.K. (1999). Plasticity solutions for soil behaviour around contracting cavities and tunnels [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 23(12):1245-1279.

[309] Mo, P.Q., Yu, H.S. (2017). Undrained Cavity-Contraction Analysis for Prediction of Soil Behavior around Tunnels [J]. International Journal of Geomechanics, 17(5):04016121.

[310] Zhuang, P.Z., Yang, H., Yue, H.Y., Fuentes, R. Yu H.S. (2022). Plasticity solutions for ground deformation prediction of shallow tunnels in undrained clay [J]. Tunnelling and Underground Space Technology, 120:104277.

[311] Vrakas, A., Anagnostou, G. (2014). A finite strain closed‐form solution for the elastoplastic ground response curve in tunnelling [J]. International Journal for Numerical and Analytical Methods in Geomechanics 38(11):1131-1148.

[312] Song, X.G., Yang, H., Yue, H.Y., Guo, X., Yu, H.S., Zhuang, P.Z. (2020). Closed-form solutions for large strain analysis of cavity contraction in a bounded Mohr-Coulomb medium [J]. European Journal of Environmental and Civil Engineering: 1-28.

[313] Verruijt, A. (1997). A complex variable solution for a deforming circular tunnel in an elastic half-plane [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 21(2):77-89.

[314] Loganathan, N., Poulos, H. (1998). Analytical prediction for tunneling-induced ground movements in clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, 124(9):846-856.

[315] Pinto, F., Whittle, A.J. (2013). Ground movements due to shallow tunnels in soft ground. I: Analytical solutions [J]. Journal of Geotechnical and Geoenvironmental Engineering, 140(4):04013040.

[316] Fu, J., Yang, J., Klapperich, H., Wang, S. (2016). Analytical prediction of ground movements due to a nonuniform deforming tunnel [J]. International Journal of Geomechanics, 16(4):04015089.

[317] Zhang, Z., Huang, M., Zhang, M. (2011). Theoretical prediction of ground movements induced by tunnelling in multi-layered soils [J]. Tunnelling and Underground Space Technology, 26(2):345-355.

[318] Franza, A., Marshall, A.M., Haji, T., Abdelatif, A.O., Carbonari, S. Morici, M. (2017). A simplified elastic analysis of tunnel-piled structure interaction [J]. Tunnelling and Underground Space Technology, 61:104-121.

[319] Cao, L., Zhang, D.L., Fang, Q. (2020). Semi-analytical prediction for tunnelling-induced ground movements in multi-layered clayey soils [J]. Tunnelling and Underground Space Technology, 102:103446.

[320] Hirai, H. (2008). Settlements and stresses of multi‐layered grounds and improved grounds by equivalent elastic method [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 32(5):523-557.

[321] Taylor, R.N. (1995). Geotechnical Centrifuge Technology [M]. Blackie Academic & Professional.

[322] Schofield, A.N. (1980). Cambridge geotechnical centrifuge operations [J]. Géotechnique, 30(3):227–268.

[323] 朱姝. 双屈服面渐进硬化本构模型及海上风机桩基础累积变形规律[D]. 湖南大学, 2021.

[324] 杜延龄,韩连兵. 土工离心模型试验技术[M]. 水利水电出版社,2010.

馆藏位置:

 U25 B 2022    

开放日期:

 2022-12-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式