中文题名: | 高压下含能材料结构稳定性的原位拉曼散射实验与第一性原理计算研究 |
姓名: | |
一卡通号: | 0000173465 |
论文语种: | 中文 |
学科名称: | |
公开时间: | 公开 |
学生类型: | 博士 |
学位: | 工学博士 |
学校: | 西南交通大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师单位: | 西南交通大学 |
完成日期: | 2017-04-30 |
答辩日期: | 2017-05-25 |
外文题名: | IN-SITU RAMAN SCATTERING AND FIRST-PRINCIPLES CALCULATIONS STUDY OF STRUCTURAL STABILITY OF TYPICAL ENERGETICAL MATERIALS UNDER HIGH PRESSURES |
中文关键词: | |
外文关键词: | high pressure ; energetic materials ; Raman scattering ; DFT ; structure |
中文摘要: |
材料的结构与性质是凝聚物理学、材料科学、化学等相关领域非常关注的基础问题之一。深入研究物质的微观结构不但有助于我们改善材料的性能而且能够指导我们发展新材料。含能材料在现代国防和民用经济建设中占据重要地位。虽然人类利用含能材料已有数百年历史,但对于其微观结构的稳定性和能量释放机理的研究还相对缺乏。特别是从微观层次认识含能炸药的起爆机理一直是现代爆轰物理、兵器科学、高压凝聚态物理、材料科学等多学科领域共同关注的重要科学问题。含能炸药在点火起爆过程中涉及高温高压环境,经历着复杂的物理、化学变化过程。但从根本上来说,材料的物理和化学性质与其结构息息相关,而研究含能材料在各种加载条件下发生爆炸的微观机理就是要揭示其分子在极端条件下如何发生结构转变或分解反应的问题。另外,研究压力作用下含能材料的分子结构变化对于认识其在起爆过程中的早期反应途径非常有益。因此,开展高压下含能材料的结构及稳定性研究对理解其分解和点火起爆等微观机理方面具有重要的科学意义。基于上述问题,本文采用金刚石压砧(DAC)和轻气炮加载技术,结合原位拉曼光谱技术、冲击热辐射技术以及第一性原理计算方法对几种典型含能材料在高压条件下的结构稳定性进行了研究,具体内容为: |
外文摘要: |
Understanding of the relationship between the properties and structures of materials is an important topic in the fields of physics, material science and chemistry. Study substance microstructure is helpful to promote performance and synthesize the new materials. Although the energetic material is widely used for many years in the areas of military and civil engineering, the study on the microstructral stability and energy liberation mechanism is relatively limited. In particular, building a detailed molecular mechanism of the detonation is a common concern in the fields of modern detonation physics, weapon science and high pressure condensed matter physics. The detonation involves complex pressure and temperature condition, and experiences a complicated process of chemical and physical change. In another words, the nature of detonation mechanism is to reveal the structural transform or decomposition reaction of the explosives under extreme conditions. Thus, studies of the pressure effects on the structure response are important for understanding and modeling energetic materials. Moreover, a good knowledge of pressure-induced structural change is useful to understand the earlier stage reaction of the explosive. Therefore, investigations of the structural stability of the energetic materials under high pressure are important to establish a satisfied molecular mechanism of detonation. Based on the above considerations, the Diamond Anvil Cell (DAC), two-stage light –gas gun, Raman spectral measurement and DFT calculation were employed to study the structural stability of the typical energetic materials, including nitromthane (NM), nitrobenzene (NB), 1,3-Diamino-2,4,6-trinitrobenzene (DATB) and nitrogen-rich energetic compound 3,4-diamino-1,2,4-triazolium1-aminotetrazol-5-oneate (ATO˙DATr). Specific contents are as follows: |
分类号: | O521 |
总页码: | 120 |
参考文献总数: | 225 |
馆藏位置: | O521 B 2017 |
开放日期: | 2017-06-05 |