- 无标题文档
查看论文信息

中文题名:

 组合步长自适应滤波理论与方法研究    

姓名:

 黄福艺    

一卡通号:

 0000246136    

论文语种:

 中文    

学科名称:

 工学 - 信息与通信工程 - 信号与信息处理    

公开时间:

 公开    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西南交通大学    

院系:

 信息科学与技术学院    

专业:

 信息与通信工程    

第一导师姓名:

 张家树    

第一导师单位:

 西南交通大学    

完成日期:

 2019-03-20    

答辩日期:

 2019-06-23    

外文题名:

 RESEARCH ON THEORY AND METHOD OF COMBINED-STEP-SIZE ADAPTIVE FILTERING    

中文关键词:

 组合步长 ; 最小均方 ; 仿射投影 ; 最大箕舌线准则 ; 子带自适应滤波器 ; 偏差补偿    

外文关键词:

 Combined-step-size ; least mean square ; affine projection ; maximum Versoria criterion ; subband adaptive filter ; bias-compensated    

中文摘要:

由于自适应滤波器的组合需要同时独立地并行运行两个或多个自适应滤波器,所以计算复杂度高。同时,在大步长的自适应滤波器和小步长的自适应滤波器之间的收敛区域,自适应滤波器的组合呈现出慢的收敛/跟踪速度。为了解决这些问题,本文提出了组合步长(CSS)的新概念,开展了CSS设计方法研究,提出了一系列CSS自适应滤波算法,形成了CSS自适应滤波理论与方法。因为提出的CSS自适应滤波器每时每刻只需要一个滤波器运行,所以它比传统的自适应滤波器的组合具有更低的计算复杂度。同时,由于CSS扮演着变步长的角色,所以提出的CSS自适应滤波器比传统的自适应滤波器的组合具有更好的收敛/跟踪行为。提出的CSS方案为变步长的设计提供了一个全新的设计方案和理念。本文主要工作有:
1、为了降低传统的最小均方(LMS)自适应滤波器的组合算法的计算复杂度和改善它的收敛/跟踪速度,提出了CSS-LMS自适应滤波算法。提出的CSS-LMS算法使用一个组合因子来自适应地组合两个不同大小的步长,大步长执行快的收敛/跟踪速度和小步长提供小的稳态误差。组合因子定义为sigmoid激活函数的输出。然后,使用随机梯度下降法最小化系统输出误差的二范数间接地更新组合因子。为了快速地获得大步长的快收敛/跟踪速度和小步长的小稳态误差,对sigmoid激活函数作了放大、平移和截断的改进。基于提出的CSS新概念,从代价函数角度出发,提出了CSS归一化LMS(CSS-NLMS)算法和CSS成比例NLMS(CSS-PNLMS)/CSS改进的成比例NLMS(CSS-IPNLMS)算法。提出的CSS-NLMS算法和CSS-PNLMS/CSS-IPNLMS算法比对应的NLMS自适应滤波器的组合算法和PNLMS/IPNLMS自适应滤波器的组合算法具有更低的计算复杂度。仿真已经证明提出的CSS-LMS类自适应滤波算法比传统的LMS类自适应滤波器的组合算法获得更好的收敛/跟踪速度。
2、提出了CSS仿射投影(AP)类自适应滤波算法,包括CSS-AP算法、CSS成比例AP/CSS改进的成比例AP算法、CSS仿射投影符号(APS)算法和CSS成比例APS/CSS改进的成比例APS算法。提出的CSS-AP类自适应滤波算法除了计算复杂度远远低于传统的AP类自适应滤波器的组合算法外,其计算复杂度与原型AP类算法相当,尤其当投影阶数很大的时候,提出的CSS-AP类算法额外增加的计算复杂度非常轻微。仿真研究表明提出的CSS-AP类算法比传统的AP类自适应滤波器的组合算法具有更快的收敛/跟踪速度。甚至,提出的CSS-APS算法比变步长APS算法呈现出更好的性能。
3、为了避免了广义的最大相关熵准则(GMCC)算法的高计算开销的指数运算和产生更小的稳态误差,用广义的箕舌线函数作代价函数,提出了最大箕舌线准则(MVC)算法。为了进一步产生更好的性能,也提出了CSS-MVC算法。为了改善MVC算法在相关输入信号下的收敛性能,结合数据重用方法,提出了仿射投影箕舌线(APV)算法,并分析了它的计算复杂度、稳定性、稳态EMSE和引入快速滤波技术降低其计算复杂度。接着,为了保障小的稳态误差的同时产生快的收敛速度,提出CSS-APV算法。针对通信传输信道的稀疏性,提出了CSS成比例APV/CSS改进的成比例APV算法,用于估计稀疏的传输信道的脉冲响应。这里,所有组合因子的更新都是基于箕舌线函数的最大化。仿真结果显示提出的算法获得了好的性能。
4、为了解决变步长(VSS)步长标量(SSS)归一化子带自适应滤波器(NSAF)算法由恒定参数引起的在快收敛速度和小稳态误差之间的权衡问题,以及改善它在系统发生突变时的跟踪性能,提出了CSS变参的SSS NSAF(CSS-VPSSS-NSAF)算法,并分析了它的稳定性。使用随机梯度法最小化子带误差向量的一范数或系统输出误差的一范数来间接地更新提出的CSS-VPSSS-NSAF算法的组合因子。仿真研究表明提出的CSS-VPSSS-NSAF算法无需使用重置算法仍然比使用重置算法的VSS-SSS-NSAF算法获得更好的跟踪性能。利用箕舌线函数的饱和特性,提出CSS变参的基于箕舌线的NSAF(CSS-VPV-NSAF)算法,然后分析了其稳定性。仿真结果展示提出的CSS-VPV-NSAF算法比VSS-SSAF算法和CSS-VPSSS-NSAF算法具有更好的性能。
5、针对偏差补偿(BC)归一化最大相关熵准则(NMCC)算法在快的收敛速度和小的稳态误差之间的权衡问题,应用箕舌线代价函数,提出了一个CSS BC归一化MVC(CSS-BC-NMVC)算法,然后分析了它的稳定性。为了改善BC-NSAF算法在非高斯脉冲干扰下的鲁棒性,利用箕舌线代价函数的饱和特性可以有效地抑制非高斯脉冲干扰的特点,提出了CSS BC基于箕舌线的NSAF(CSS-BC-V-NSAF)算法,并分析了它的稳定性。仿真证明提出的CSS-BC-NMVC算法具有良好的鲁棒性和比BC-NMCC算法产生更快的收敛速度和更小的稳态误差;提出的CSS-BC-V-NSAF算法不但解决了BC-NSAF算法在快的收敛速度和小的稳态误差之间的折衷问题,而且克服了BC-NSAF算法在非高斯脉冲干扰下丧失鲁棒性的缺点。

外文摘要:

Combinations of adaptive filters have high computational burdens due to the two or several adaptive filters running at the same time. Meanwhile, they also have poor convergence or tracking behavior at the intersection of the large step size filter and the small step size filter. To overcome these drawbacks, this paper proposes a new concept of combined-step-size (CSS), studies the design method of CSS, proposes a series of CSS adaptive filtering algorithms, and forms the theory and method of CSS adaptive filtering. The proposed CSS scheme has lower computational complexity than the conventional combination scheme of adaptive filters because it only requires one filter run at every moment. Because the proposed CSS plays the role of variable step size, the convergence or tracking behavior of the proposed CSS adaptive filter is much better than that of the traditional combination of adaptive filters. The proposed CSS scheme provides a new design scheme and idea for variable step size design. The major contributions of this dissertation are as follows:
1、In order to reduce the computational complexity of combination of least mean square (LMS) adaptive filters and improve its convergence or tracking behavior, a CSS-LMS adaptive filter is developed. The proposed CSS-LMS adaptive filter uses a combining factor to adaptively combine two different step sizes of one LMS adaptive filter, where the large step size affords a fast convergence or tracking rate and the small one offers a small steady-state error. The combining factor is defined as the output of a sigmoidal activation function and it updates indirectly by using the stochastic gradient descent method to minimize the L2-norm of the system output error. In order to quickly obtain the fast convergence or tracking rate of the large step size and the small steady-state error of the small one, the sigmoid activation function is modified by using enlarged, shifted and truncated methods. Based on the proposed new concept of CSS, the CSS normalized LMS (CSS-NLMS) adaptive filter and the CSS proportionate NLMS (CSS-PNLMS)/CSS improved proportionate NLMS (CSS-IPNLMS) adaptive filter are also proposed for reducing the computational complexities of combination of the corresponding adaptive filters and improving their convergence or tracking behavior. Simulations have demonstrated that the proposed CSS-LMS family adaptive filters obtain the superior convergence or tracking performance than the combinations of LMS family adaptive filters.
2、Based on the proposed new concept of CSS, a CSS affine projection (AP) family adaptive filtering algorithms are developed. The proposed CSS-AP family algorithms include the CSS-AP algorithm, CSS proportionate AP (CSS-PAP)/CSS improved proportionate AP (CSS-IPAP) algorithm, CSS affine projection sign (CSS-APS) algorithm, and CSS proportionate APS (CSS-PAPS)/CSS improved proportionate APS (CSS-IPAPS) algorithm. Except that the computational complexities of the proposed CSS-AP family algorithms are much lower than those of the traditional combination algorithms of AP family adaptive filters, their computational complexities are comparable to those of the original AP family algorithms. Especially when the projection order is very large, the additional computational complexities of the proposed CSS-AP family algorithms are very slight. Simulation results show that the proposed CSS-AP family algorithms have faster convergence or tracking rates than the traditional combination algorithms of AP family adaptive filters. Furthermore, the proposed CSS-APS algorithm presents superior performance than the variable step size APS algorithm.
3、In order to avoid the high computational burden of the exponential term of the generalized maximum correntropy criterion (GMCC) algorithm and produce smaller steady-state error, a maximum Versoria criterion (MVC) algorithm is proposed by maximizing the generalized Versoria function. Then, its CSS variant is also developed for producing better filter performance. To accelerate the convergence rate of the MVC algorithm for the correlated input signals, an affine projection Versoria (APV) algorithm is derived by maximizing the summation of Versoria-cost-reusing with a constraint on the square of the L2-norm of the filter weight vector difference. Its computational complexity, stability, and steady-state excess mean-square error analyses are carried out and a fast recursive filtering technique is introduced to reduce its complexity. A CSS-APV algorithm is then proposed for solving the tradeoff problem of fast convergence rate and small steady-state error of the APV algorithm. For the sparsity of communication transmission channel, a CSS proportionate APV/CSS improved proportionate APV algorithm is proposed to estimate the impulse response of sparse transmission channels. In this section, all combining factors of CSSs are updated indirectly by using the stochastic gradient method to maximize the Versoria cost function. Simulation results show that the proposed Versoria family algorithms achieve good performance in terms of the convergence or tracking rate and the steady-state error.
4、To address the tradeoff between the fast convergence rate and small steady-state error of the variable step-size (VSS) normalized subband adaptive filter (NSAF) with a fixed parametric step-size scaler (SSS) and improve its tracking performance in abrupt change scenarios, a combined-step-size (CSS) NSAF with a variable-parametric SSS (VPSSS) is proposed and its stability is analyzed. The combining factor of the CSS-VPSSS-NSAF algorithm is updated indirectly by using the stochastic gradient method to minimize the L1-norm of the subband error vector or system output error. Simulation results show that the proposed CSS-VPSSS-NSAF algorithm without the reset algorithm still achieves better tracking performance than the VSS-SSS-NSAF algorithm with the reset algorithm. Utilizing the saturation property of the Versoria cost function, a CSS variable-parametric Versoria-based NSAF (VPV-NSAF) algorithm is proposed and its stability is analyzed. Simulations show that the proposed CSS-VPV-NSAF algorithm performs much better than the VSS sign subband adaptive filter algorithm and CSS-VPSSS-NSAF algorithm.
5、The bias-compensated (BC) normalized maximum correntropy criterion (NMCC) algorithm encounters the conflicting requirement of fast convergence rate and small steady-state error. In order to overcome this drawback, a CSS BC normalized MVC (CSS-BC-NMVC) algorithm is proposed, which is obtained by combining the CSS scheme and the Versoria cost function. Its stability is then analyzed. For improving the robustness of the BC-NSAF algorithm in the presence of non-Gaussian impulsive interferences, by utilizing the Versoria cost function with the saturation property which can suppress the non-Gaussian impulsive interferences effectively, a CSS BC V-NSAF (CSS-BC-V-NSAF) algorithm is presented and its stability is analyzed. Simulation results have verified that the proposed CSS-BC-NMVC algorithm has good robustness and produces faster convergence rate and smaller steady-state error than the BC-NMCC algorithm. Also, the proposed CSS-BC-V-NSAF algorithm not only solves the tradeoff problem between fast convergence rate and small steady-state error of the BC-NSAF algorithm, but also overcomes the disadvantage that the BC-NSAF algorithm loses robustness in the presence of non-Gaussian impulsive interferences.

分类号:

 TN911    

总页码:

 144    

参考文献总数:

 160    

参考文献:

[1]Haykin S. Adaptive Filter Theory[M]. 4th ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.

[2]Gay S L, Benesty J. Acoustic Signal Processing for Telecommunication[M]. Norwell, MA: Kluwer Academic, 2001.

[3]何振亚. 自适应信号处理[M]. 科学出版社, 中国北京, 2002.

[4]岳天爽等. 通信中的自适应信号处理[M]. 电子工业出版社, 中国北京, 2005.

[5]Arce G. Nonlinear Signal Processing[M]. John Wiley, New York, 2005.

[6]Sayed A H. Adaptive Filters[M]. Hoboken, NJ: Wiley, 2008.

[7]Sayed A H. Adaptive networks[J]. Proc. IEEE, 2014, 102(4): 460–497.

[8]Ding H. Fast affine projection adaptation algorithms with stable and robust symmetric linear system slovers[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1730–1740.

[9]Widrow B, Hoff M E. Adaptive Switching Circuits[J]. Wescon Conv. Record, 1960, Pt. 4: 96–140.

[10]Verhoeckx N A M, van den Elzen H C, Snijders F A M, van Gerwen P J. Digital echo cancellation for baseband data transmission[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, ASSP-27: 768-781.

[11]Ozeki K, Umeda T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties[J]. Electronics and Communications in Japan, 1984, 67(5): 19-27.

[12]Shao T, Zheng Y R, Benesty J. An affine projection sign algorithm robust against impulsive interferences[J]. IEEE Signal Processing Letters, 2010, 17(4): 327–330.

[13]Lee K A, Gan W S, Kuo S M. Subband Adaptive Filtering: Theory and Implementation[M]. Wiley, Chichester, UK, 2009.

[14]Ni J, Li F. Variable regularisation parameter sign subband adaptive filter[J]. Electronics Letters, 2010, 46(24): 1605–1607.

[15]Zhang J. Least mean square error difference minimum criterion for adaptive chaotic noise canceller[J]. Chinese Physics, 2007, 16(2): 352.

[16]Zhang J, Tai H M. Adaptive noise cancellation algorithm for speech processing[C]. IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 2007. IEEE, 2008: 2489-2492.

[17]Kang B, Yoo J, Park P. Bias-compensated normalised LMS algorithm with noisy input[J]. Electronics Letters, 2013, 49(8): 538–539.

[18]Martínez-Ramón M, Arenas-García J, Navia-Vázquez A, Figueiras-Vidal A R. An adaptive combination of adaptive filters for plant identification[C]. 14th International Conference on Digital Signal Processing Proceedings, Santorini, Greece, 2002. IEEE, 2002: 1195–1198.

[19]Arenas-García J, Figueiras-Vidal A R, Sayed A H. Tracking properties of a convex combination of two adaptive filters[C]. IEEE/SP 13th Workshop on Statistical Signal Processing, Bordeaux, France, 2005. IEEE, 2006: 109–114.

[20]Arenas-García J, Figueiras-Vidal A R, Sayed A H. Mean-square performance of a convex combination of two adaptive filters[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1078–1090.

[21]Zhang Y, Chambers J. Convex combination of adaptive filters for a variable tap-length LMS algorithm[J]. IEEE Signal Processing Letters, 2006, 13(10): 628–631.

[22]Candido R, Silva M T M, Nascimento V. H. Transient and steady-state analysis of the affine combination of two adaptive filters[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 4064–4078.

[23]Kozat S S, Singer A C, Erdogan A T, Sayed A H. Unbiased Model Combinations for Adaptive Filtering[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4421–4427.

[24]Trump T. Transient analysis of an output signal based combination of two NLMS adaptive filters[C]. 2010 IEEE International Workshop on Machine Learning for Signal Processing, Kittila, Finland, 2010. IEEE, 2010: 244–249.

[25]Zeller M, Azpicueta-Ruiz L A, Arenas-García J, Kellermann W. Adaptive volterra filters with evolutionary quadratic kernels using a combination scheme for memory control[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1449–1464.

[26]Bermudez J C M, Bershad N J, Tourneret J Y. Stochastic analysis of an error power ratio scheme applied to the affine combination of two LMS adaptive filters[J]. Signal Processing, 2011, 91(11): 2615–2622.

[27]Kozat S S, Erdogan A T, Singer A C, Sayed A H. Transient analysis of adaptive affine combinations[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 6227–6232.

[28]Arenas-Garcia J, Azpicueta-Ruiz L A, Sliva M T M, Nascimento V H, Sayed A H. Combinations of adaptive filters: performance and convergence properties[J]. IEEE Signal Processing Magazine, 2016, 33(1): 120–140.

[29]Silva M T M, Nascimento V H. Improving the tracking capability of adaptive filters via convex combination[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 3137–3149.

[30]Silva M T M, Arenas-García J. A soft-switching blind equalization scheme via convex combination of adaptive filters[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1171–1182.

[31]Arenas-García J, Figueiras-Vidal A R. Adaptive combination of proportionate filters for sparse echo cancellation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009, 17(6): 1087–1098.

[32]Azpicueta-Ruiz L A, Zeller M, Arenas-Garcia J, Kellermann W. Novel schemes for nonlinear acoustic echo cancellation based on filter combinations[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 2009. IEEE, 2009: 193–196.

[33]Azpicueta-Ruiz L A, Zeller M, Figueiras-Vidal A R, Kellermann W, Arenas-García J. Enhanced adaptive Volterra filtering by automatic attenuation of memory regions and its application to acoustic echo cancellation[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2745–2750.

[34]Comminiello D, Scarpiniti M, Azpicueta-Ruiz L A, Arenas-García J, Uncini A. Functional link adaptive filters for nonlinear acoustic echo cancellation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(7): 1502–1511.

[35]Jelfs B, Javidi S, Vayanos P, Mandic D P. Characterisation of signal modality: exploiting signal nonlinearity in machine learning and signal processing[J]. Journal Signal Processing Systems, 2010, 61(1): 105–115.

[36]Li L, Xia Y, Jelfs B, Mandic D P. Modelling of brain consciousness based on collaborative filters[J]. Neurocomputing, 2012, 76(1): 36–43.

[37]Jelfs B, Mandic D P, Douglas S C. An adaptive approach for the identification of improper signals[J]. Signal Processing, 2012, 92(2): 335–344.

[38]Trump T. A combination of two NLMS filters in an adaptive line enhancer[C]. 17th International Conference on Digital Signal Processing (DSP), Corfu, Greece, 2011. IEEE, 2011: 1–6.

[39]Azpicueta-Ruiz L A, Lázaro-Gredilla M, Figueiras-Vidal A R, Arenas-García J. A block-based approach to adaptively bias the weights of adaptive filters[C]. IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 2011. IEEE, 2011: 1–6.

[40]Das B K, Chakraborty M. Sparse adaptive filtering by an adaptive convex combination of the LMS and the ZA-LMS algorithms[J]. IEEE Transactions on Circuits and Systems–I: Regular Papers, 2014, 61(5): 1499–1507.

[41]Lu S, Sun J, Wang G, Tian J. A novel GSC beamformer using a combination of two adaptive filters for smart antenna array[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 377–380.

[42]Comminiello D, Scarpiniti M, Parisi R, Uncini A. Combined adaptive beamforming schemes for nonstationary interfering noise reduction[J]. Signal Processing, 2013, 93(12): 3306–3318.

[43]Ferrer M, Gonzalez A, de Diego M, Piñero G. Convex combination filtered-X algorithms for active noise control systems[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(1): 156–167.

[44]George N V, Gonzalez A. Convex combination of nonlinear adaptive filters for active noise control[J]. Applied Acoustics, 2014, 76: 157–161.

[45]Arenas-García J, Gómez-Verdejo V, Martínez-Ramón M, Figueiras-Vidal A R. Separate-variable adaptive combination of LMS adaptive filters for plant identification[C]. IEEE XIII Workshop on Neural Networks for Signal Processing, Toulouse, France, 2003. IEEE, 2004: 239–248.

[46]Arenas-García J, Martínez-Ramón M, Gómez-Verdejo V, Figueiras-Vidal A R. Multiple plant identifier via adaptive LMS convex combination[C]. IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 2003. IEEE, 2004: 137–142.

[47]Arenas-García J, Martínez-Ramón M, Navia-Vázquez A, Figueiras-Vidal A R. Plant identification via adaptive combination of transversal filters[J]. Signal Processing, 2006, 86(9): 2430–2438.

[48]Nascimento V H, de Lamare R C. A low-complexity strategy for speeding up the convergence of convex combinations of adaptive filters[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012. IEEE, 2012: 3553–3556.

[49]Shi L, Lin Y. Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference[J]. IEEE Signal Processing Letters, 2014, 21(11): 1385–1388.

[50]Chamon L F O, Lopes W B , Lopes C G. Combination of adaptive filters with coefficients feedback[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012. IEEE, 2012: 3785–3788.

[51]Yu Y, Zhao H. Adaptive combination of proportionate NSAF with the tap-weights feedback for acoustic echo cancellation[J]. Wireless Personal Communications, 2017, 92: 467–481.

[52]Yu Y, Zhao H. Novel combination schemes of individual weighting factors sign subband adaptive filter algorithm[J]. International Journal of Adaptive Control and Signal Processing, 2017, 31(8): 1193–1204.

[53]Lázaro-Gredilla M, Azpicueta-Ruiz L A , Figueiras-Vidal A R , Arenas-García J. Adaptively biasing the weights of adaptive filters[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3890–3895.

[54]Bershad N J , Bermudez J C M, Tourneret J Y. An affine combination of two LMS adaptive filters—Transient mean-square analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1853–1864.

[55]Ferrer M, de Diego M, Gonzalez A, Pinero G. Convex combination of affine projection algorithms[C]. 17th European Signal Processing Conference, Glasgow, UK, 2009. IEEE, 2015: 431–435.

[56]Nascimento V H, Silva M T M, Azpicueta-Ruiz L A, Arenas-García J. On the tracking performance of combinations of least mean squares and recursive least squares adaptive filters[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 2010. IEEE, 2010: 3710–3713.

[57]Ni J, Li F. Adaptive combination of subband adaptive filters for acoustic echo cancellation[J]. IEEE Transactions on Consumer Electronics, 2010, 56(3): 1549–1555.

[58]Navia-Vázquez A, Arenas-García J. Combination of recursive least p-norm algorithms for robust adaptive filtering in alpha-stable noise[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1478-1482.

[59]Shi L, Lin Y, Xie X. Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference[J]. Electronics Letters, 2014, 50(6): 466–467.

[60]Ujang B C, Jahanchahi C, Took C C, Mandic D P. Adaptive convex combination approach for the identification of improper quaternion processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 172–182.

[61]Kim S H, Jeong J J, Koo G, Kim S W. Robust convex combination of affine projection-type algorithms using an impulsive noise indicator[J]. Signal Processing, 2016, 129: 33–37.

[62]Das B K, Chakravarthi G V, Chakraborty M. A convex combination of NLMS and ZA-NLMS for identifying systems with variable sparsity[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2017, 64(9): 1112–1116.

[63]Gogineni V C, Das B K, Chakraborty M. An adaptive convex combination of APA and ZA-APA for identifying systems having variable sparsity and correlated input[J]. Digital Signal Processing, 2018, 82: 118–132.

[64]Chien Y R, Li-You J. Convex combined adaptive filtering algorithm for acoustic echo cancellation in hostile environments[J]. IEEE Access, 2018, 6: 16138-16148.

[65]Azpicueta-Ruiz L A, Figueiras-Vidal A R, Arenas-García J. A normalized adaptation scheme for the convex combination of two adaptive filters[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008. IEEE, 2008: 3301–3304.

[66]Bermudez J C M, Bershad N J, Tourneret J. Y. An affine combination of two NLMS adaptive filters—Transient mean-square analysis[C]. 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2008. IEEE, 2009: 230–235.

[67]Azpicueta-Ruiz L A, Figueiras-Vidal A R, Arenas-García J. A new least squares adaptation scheme for the affine combination of two adaptive filters[C]. IEEE Workshop on Machine Learning for Signal Processing, Cancun, Mexico, 2008. IEEE, 2008: 327–332.

[68]Gui G, Kumagai S, Mehbodniya A, Adachi F. Two are better than one: Adaptive sparse system identification using affine combination of two sparse adaptive filters[C]. IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, South Korea, 2014. IEEE, 2015: 1–5.

[69]Gui G, Liu N, Xu L, Adachi F. Low-complexity large-scale multiple-input multiple-output channel estimation using affine combination of sparse least mean squares filter[J]. IET Communications, 2015, 9(17): 2168-2175.

[70]Lu S, Sun J, Wang G, Lu Y. A mixing vector based an affine combination of two adaptive filters for sensor array beamforming[J]. Progress in Electromagnetics Research, 2012, 122: 361–387.

[71]Trump T. Output statistics of a line enhancer based on a combination of two adaptive filters[J]. Central European Journal of Engineering, 2011, 1(3): 244–252.

[72]Andersson P. Adaptive forgetting in recursive identification through multiple models[J]. International Journal of Control, 1985, 42(5): 1175–1193.

[73]Arenas-García J, Gómez-Verdejo V, Figueiras-Vidal A R. New algorithms for improved adaptive convex combination of LMS transversal filters[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2239–2249.

[74]Kozat S S, Erdogan A T, Singer A C, Sayed A H. Steady-state MSE performance analysis of mixture approaches to adaptive filtering[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4050–4063.

[75]Azpicueta-Ruiz L A, Zeller M, Figueiras-Vidal A R, Arenas-García J. Least-squares adaptation of affine combinations of multiple adaptive filters[C]. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010. IEEE, 2010: 2976–2979.

[76]Azpicueta-Ruiz L A, Zeller M, Figueiras-Vidal A R, Arenas-García J, Kellermann W. Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(1): 97–110.

[77]Arevalo L, Apolinario J A, de Campos M L R, Sampaio-Neto R. Convex combination of three affine projections adaptive filters[C]. The Tenth International Symposium on Wireless Communication Systems, Ilmenau, Germany, 2013. IEEE, 2013: 209–213.

[78]Comminiello D, Scarpiniti M, Azpicueta-Ruiz L A, Arenas-García J, Uncini A. Combined nonlinear filtering architectures involving sparse functional link adaptive filters[J]. Signal Processing, 2017, 135: 168–178.

[79]Principe J C, Euliano N R, Lefebvre W C. Neural and Adaptive Systems: Fundamentals through Simulations[M]. New York: John Wiley & Sons, 2000.

[80]Haykin S. Neural Networks and Learning Machines[M]. 3rd ed. Upper Saddle River, NJ: Pearson Education, 2009.

[81]Mandic D P, Chambers J A. Towards the optimal learning rate for backpropagation[J]. Neural Processing Letters, 2000, 11(1): 1–5.

[82]Mandic D P, Hanna A I, Razaz M. A normalized gradient descent algorithm for nonlinear adaptive filters using a gradient adaptive step size[J]. IEEE Signal Processing Letters, 2001, 8(11): 295–297.

[83]Mandic D P. NNGD algorithm for neural adaptive filters[J]. Electronics Letters, 2000, 39(9): 845–846.

[84]Zhang S, Zheng W X. Recursive adaptive sparse exponential functional link neural network for nonlinear AEC in impulsive noise environment[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4314–4323.

[85]Duttweiler D L. Proportionate normalized least-mean-squares adaptation in echo cancellers[J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 508–518.

[86]Benesty J, Gay S L. An improved PNLMS algorithm[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 2002. IEEE, 2011: 1881–1884.

[87]Benesty J, Paleologu C, Ciochina S. Proportionate adaptive filters from a basis pursuit perspective[J]. IEEE Signal Processing Letters, 2010, 17(12): 985–988.

[88]Paleologu C, Ciochina S, Benesty J. An efficient proportionate affine projection algorithm for echo cancellation[J]. IEEE Signal Processing Letters, 2010, 17(2): 165–168.

[89]Sakhnov K. An improved proportionate affine projection algorithm for network echo cancellation[C]. 15th International Conference on Systems, Signals and Image Processing, Bratislava, Slovakia, 2008. IEEE, 2008: 125–128.

[90]Yang Z, Zheng Y R , Grant S L. Proportionate affine projection sign algorithms for network echo cancellation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(8): 2273–2284.

[91]Shin H C, Sayed A H, Song W J. Variable step-size NLMS and affine projection algorithms[J]. IEEE Signal Processing Letters, 2004, 11(2): 132–135.

[92]Paleologu C, Benesty J, Ciochina S. A variable step-size affine projection algorithm designed for acoustic echo cancellation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(8): 1466–1478.

[93]Lee C, Park P. Scheduled-step-size affine projection algorithm[J]. IEEE Transactions on Circuits and Systems–I: Regular Papers, 2012, 59(9): 2034–2043.

[94]Shin J, Yoo J, Park P. Variable step-size affine projection sign algorithm[J]. Electronics Letters, 2012, 48(9): 483–485.

[95]Zhang S, Zhang J. Modified variable step-size affine projection sign algorithm[J]. Electronics Letters, 2013, 49(20): 1264–1265.

[96]Yoo J, Shin J, Park P. Variable step-size affine projection sign algorithm[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2014, 61(4): 274–278.

[97]Sayed A H. Fundamentals of Adaptive Filtering[M]. Hoboken, NJ, USA: Wiley, 2003.

[98]Song I, Park P, Newcomb R W. A normalized least mean squares algorithm with a step-size scaler against impulsive measurement noise[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2013, 60(7): 442–445.

[99]Zeng J, Lin Y, Shi L. A normalized least mean squares algorithm based on the arctangent cost function robust against impulsive interference[J]. Circuits, Systems, and Signal Processing, 2016, 35: 3040–3047.

[100]Huang F, Zhang J, Zhang S. NLMS algorithm based on a variable parameter cost function robust against impulsive interferences[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2017, 64(5): 600–604.

[101]Zhang S, Zheng W X, Zhang J, Han H. A family of robust m-shaped error weighted least mean square algorithms: performance analysis and echo cancellation application[J]. IEEE Access, 2017, 5: 14716-14727.

[102]Huang F, Zhang J, Zhang S. A family of robust adaptive filtering algorithms based on sigmoid cost[J]. Signal Processing, 2018, 149: 179–192.

[103]Singh A, Principe J C. Using correntropy as a cost function in linear adaptive filters[C]. International Joint Conference on Neural Networks, Atlanta, Georgia, USA, 2009. IEEE, 2009: 2950–2955.

[104]Ogunfunmi T, Paul T. The quarternion maximum correntropy algorithm[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2015, 62(6): 598–602.

[105]Chen B, Xing L, Zhao H, Zheng N, Principe J C. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387.

[106]Huang F, Zhang J, Zhang S. Adaptive filtering under a variable kernel width maximum correntropy criterion[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2017, 64(10): 1247–1251.

[107]Wang S, Dang L, Chen B, Duan S, Wang L, Chi K T. Random Fourier filters under maximum correntropy criterion[J]. IEEE Transactions on Circuits and Systems–I: Regular Papers, 2018, 65(10): 3390–3403.

[108]Yu X, Liu J, Li H. An adaptive inertia weight particle swarm optimization algorithm for IIR digital filter[C]. International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 2009. IEEE, 2010: 114-118.

[109]Pei S C, Tseng C C. Least mean p-power error criterion for adaptive FIR filter[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(9): 1540–1547.

[110]Al-Naffouri T Y, Sayed A H. Adaptive filters with error nonlinearities: Mean-square analysis and optimum design[J]. EURASIP Journal on Applied Signal Processing, 2001, 4: 192–205.

[111]Yousef N R, Sayed A H. A unified approach to the steady-state and tracking analysis of adaptive filters[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 314–324.

[112]Al-Naffouri T Y, Sayed A H. Transient analysis of adaptive filters with error nonlinearities[J]. IEEE Transactions on Signal Processing, 2003, 51(3): 653–663.

[113]Al-Naffouri T Y, Sayed A H. Transient analysis of data-normalized adaptive filters[J]. IEEE Transactions on Signal Processing, 2003, 51(3): 639–652.

[114]Nascimento V H, Bermudez J C M. Probability of divergence for the least-mean fourth algorithm[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1376–1385.

[115]Zakharov Y V. Low-complexity implementation of the affine projection algorithm[J]. IEEE Signal Processing Letters, 2008, 15: 557–560.

[116]Bhotto M Z A, Antoniou A. Affine-projection-like adaptive-filtering algorithms using gradient-based step size[J]. IEEE Transactions on Circuits and Systems–I: Regular Papers, 2014, 61(7): 2048–2056.

[117]Tukey J W. A Survey of Sampling From Contaminated Distributions[J]. Contributions to Probability and Statistics, I. Olkin, Ed. Stanford, CA: Univ. Press, 1960: 448-485.

[118]Wang X, Poor H V. Joint channel estimation and symbol detection in Rayleigh flat-fading channels with impulsive noise[J]. IEEE Communications Letters, 1997, 1(1): 19–21.

[119]Chan S C, Zou Y X. A recursive least m-estimate algorithm for robust adaptive filtering in impulsive noise: Fast algorithm and convergence performance analysis[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 975–991.

[120]Zhou Y, Chan S C, Ho K L. New sequential partial-update least mean M-estimate algorithms for robust adaptive system identification in impulsive noise[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4455–4470.

[121]Sayin M O, Vanli N D, Kozat S S. A novel family of adaptive filtering algorithms based on the logarithmic cost[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4411–4424.

[122]Chen B, Xing L, Liang J, Zheng N, Principe J C. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J]. IEEE Signal Processing Letters, 2014, 21(7): 880–884.

[123]Price R. A useful theorem for nonlinear devices having Gaussian inputs[J]. IRE Transactions on Information Theory, 1958, 4(2): 69–72.

[124]McMahon E. An extension of Price’s theorem (Corresp.)[J]. IEEE Transactions on Information Theory, 1964, 10(2): 168–168.

[125]ITU-T Recommendation G.168, Digital Network Echo Cancellers[M]. Geneva, Switzerland: Int. Telecomm. Union, 2007.

[126]Kuo S M, Chuang H, Mallela P P. Integrated automotive signal processing and audio system[J]. IEEE Transactions on Consumer Electronics, 1993, 39(3): 522–532.

[127]Doğançay K, Tanrikulu O. Adaptive filtering algorithms with selective partial update[J]. IEEE Transactions on Circuit and Systems–II: Analog and Digital Signal Processing, 2001, 48(8): 762–769.

[128]Benvenuto N, Marchesani R. The viterbi algorithm for sparse channels[J]. IEEE Transactions on Communications, 1996, 44(3): 287–289.

[129]Cotter S F, Rao B D. Sparse channel estimation via matching pursuit with application to equalization[J]. IEEE Transactions on Communications, 2002, 50(3): 374–377.

[130]Kim S. Angle-domain frequency-selective sparse channel estimation for underwater MIMO-OFDM systems[J]. IEEE Communications Letters, 2012, 16(5): 685–687.

[131]Huang Y, He Y, Luo Q, Shi L, Wu Y. Channel estimation in MIMO–OFDM systems based on a new adaptive greedy algorithm[J]. IEEE Wireless Communications Letters, 2019, 8(1): 29–32.

[132]Martin R K, Sethares W A, Williamson R C, Johnson C R. Exploiting sparsity in adaptive filters[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1883–1894.

[133]Carbonelli C, Vedantam S, Mitra U. Sparse channel estimation with zero tap detection[J]. IEEE Transactions on Wireless Communications, 2007, 6(5): 1743–1753.

[134]Kivinen J, Warmuth M K. Exponentiated gradient versus gradient descent for linear predictors[J]. Information and Computation, 1997, 132(1): 1–64.

[135]Mahony R E, Williamson R C. Prior knowledge and preferential structures in gradient descent learning algorithms[J]. Journal of Machine Learning Research, 2001, 1: 311–355.

[136]Pelekanakis K, Chitre M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183–3195.

[137]Hong X, Gao J, Chen S. Zero-attracting recursive least squares algorithms[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 213–221.

[138]Zhidkov S. Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers[J]. IEEE Transactions on Communications, 2008, 56(1): 5–9.

[139]Yih C H. Iterative interference cancellation for OFDM signals with blanking nonlinearity in impulsive noise channels[J]. IEEE Signal Processing Letters, 2012, 19(3): 147–150.

[140]Kuai X, Sun H, Zhou S, Cheng E. Impulsive noise mitigation in underwater acoustic OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 8190–8202.

[141]Hur J, Song I, Park P. A variable step-size normalized subband adaptive filter with a step-size scaler against impulsive measurement noise[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2017, 64(7): 842–846.

[142]Ni J, Li F. A variable step-size matrix normalized subband adaptive filter[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6): 1290–1299.

[143]Ni J, Li F. Variable regularization parameter sign subband adaptive filter[J]. Electronics Letters, 2010, 46(24): 1605–1607.

[144]Lee K A, Gan W S. Improving convergence of the NLMS algorithm using constrained subband updates[J]. IEEE Signal Processing Letters, 2004, 11(9): 736–739.

[145]Zhang S, Zheng W X, Zhang J. A new combined-step-size normalized least mean square algorithm for cyclostationary inputs[J]. Signal Processing, 2017, 141: 261–272.

[146]Shin J, Yoo J, Park P. Variable step-size sign subband adaptive filter[J]. IEEE Signal Processing Letters, 2013, 20(2): 173–176.

[147]Kim J, Chang J, Nam S. Sign subband adaptive filter with l1-norm minimisation-based variable step-size[J]. Electronics Letters, 2013, 49(21): 1325–1326.

[148]So H C. LMS-based algorithm for unbiased FIR filtering with noisy measurements[J]. Electronics Letters, 2001, 37(23): 1418–1420.

[149]Jo S E, Kim S W. Consistent normalized least mean square filtering with noisy data matrix[J]. IEEE Transactions on Signal Processing, 2005, 53(6): 2112–2123.

[150]Jung S M, Park P G. Normalised least-mean-square algorithm for adaptive filtering of impulsive measurement noises and noisy inputs[J]. Electronics Letters, 2013, 49(20): 1270–1272.

[151]Jung S M, Kwon N K, Park P G. A bias-compensated affine projection algorithm for noisy input data[C]. 9th Asian Control Conference (ASCC), Istanbul, Turkey, 2013. IEEE, 2013: 1–5.

[152]Yoo J W, Shin J W, Park P G. An improved NLMS algorithm in sparse systems against noisy input signals[J]. IEEE Transactions on Circuits and Systems–II: Express Briefs, 2015, 62(3): 271–275.

[153]Jung S M, Park P G. Stabilization of a bias-compensated normalized least-mean-square algorithm for noisy inputs[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2949–2961.

[154]Ma W, Li N, Li Y, Duan J, Chen B. Sparse normalized least mean absolute deviation algorithm based on unbiasedness criterion for system identification with noisy input[J]. IEEE Access, 2018, 6: 14379–14388.

[155]Ma W, Zheng D, Zhang Z, Duan J, Qiu J, Hu X. Sparse-aware bias-compensated adaptive filtering algorithms using the maximum correntropy criterion for sparse system identification with noisy input[J]. Entropy, 2018, 20(6), 407.

[156]Yin W, Cheng S, Wei Y, Shuai J, Wang Y. A bias-compensated fractional order normalized least mean square algorithm with noisy inputs[J]. Numerical Algorithms, 2018, https://doi.org/10.1007/s11075-018-0600-5.

[157]Wang W, Zhao H, Lu L, Yu Y. Bias-compensated constrained least mean square adaptive filter algorithm for noisy input and its performance analysis[J]. Digital Signal Processing, 2019, 84: 26–37.

[158]Ma W, Zheng D, Li Y, Zhang Z, Chen B. Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input[J]. Signal Processing, 2018, 152: 160–164.

[159]Zhang S, Zhang J. Transient analysis of zero attracting nlms algorithm without gaussian inputs assumption[J]. Signal Processing, 2014, 97: 100–109 .

[160]Zheng Z, Zhao H. Bias-compensated normalized subband adaptive filter algorithm[J]. IEEE Signal Processing Letters, 2016, 23(6): 809–813.

馆藏位置:

 TN911 B 2019    

开放日期:

 2019-07-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式