- 无标题文档
查看论文信息

中文题名:

 地铁多列车节能运行场景的仿真与能耗计算    

姓名:

 王凌    

一卡通号:

 0000322446    

论文语种:

 中文    

学科名称:

 工学 - 交通运输工程 - 交通信息工程及控制    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 信息科学与技术学院    

专业:

 交通信息工程及控制    

第一导师姓名:

 郭进    

第一导师单位:

 西南交通大学    

完成日期:

 2020-04-10    

答辩日期:

 2020-05-26    

外文题名:

 SIMULATION AND ENERGY CONSUMPTION CALCULATION OF METRO MULTI-TRAIN ENERGY-SAVING OPERATION SCENARIOS    

中文关键词:

 城市轨道交通 ; 列车节能 ; 动态特性 ; 列车运行能耗 ; 牵引供电 ; 潮流计算    

外文关键词:

 Urban rail transit ; train energy saving ; dynamic characteristics ; train operation energy consumption ; traction power supply    

中文摘要:

随着我国城市化进展的逐步加快,城市交通拥堵问题与城市空气污染问题日益严重,地铁系统因为其运量大、安全高效以及节能环保等特点得到了极大的发展。尽管地铁系统已经是陆地交通方式中最节能的交通运输方式,但是随着其运营里程的快速增长,地铁系统的能耗在爆发式增长且其总能耗已经很巨大,能耗增加不仅增加了运营单位的压力也对国家的节能减排策略带来影响。其中列车运行能耗在地铁系统能耗中占到了很重要的部分,因此如何对地铁列车运行能耗进行详细的分析与计算,对地铁系统能耗的优化有着重要的意义。
本文研究一个运行间隔内同一供电区间中列车数量及运行方向的动态特性影响下的地铁多列车运行能耗计算问题,本文首先对单列车动力学模型详细分析,给出了不同列车牵引策略下的单列车运行曲线的仿真方法,并结合列车牵引制动特性曲线对不同状态下的列车进行功率需求分析,并针对地铁牵引供电系统的特点,建立了地铁牵引供电系统各组成部分的电路基本等效模型。
然后利用地铁系统运行的动态时变特性将单列车运行场景构成动态多列车运行场景,并将相应的场景与地铁牵引供电系统等效模型相结合,充分考虑再生制动利用和牵引电网电压对制动过程影响,结合再生制动与电阻制动投入的切换机理,提出一种将列车动力学模型与牵引供电模型相结合的动态多列车运行场景能耗计算模型,并根据电路潮流计算方法给出一种基于高斯-赛德尔迭代法的模型求解算法,实现动态多列车运行场景下的能耗精准计算。
最后本文基于上述研究思路搭建一个面向动态多列车运行场景仿真与能耗计算分析的平台,通过仿真平台的列车运行能耗实例仿真与分析结果,表明了本论文所设计的动态多列车运行场景能耗计算方法与仿真平台,能够对一个运行间隔内同一供电区间所存在的所有列车运行场景进行了分析,并能从电力能耗角度出发实现列车运行能耗的精准计算,对于节能过程中列车操纵策略的选择和列车调度安排有着重要指导意义。
 

外文摘要:

With the gradual acceleration of the progress of urbanization in China, the problem of urban traffic congestion and urban air pollution has become increasingly serious. The subway system has been greatly developed because of its large capacity, safety and efficiency, and energy conservation and environmental protection. Although the subway system is already the most energy-efficient mode of transportation in land transportation, with the rapid growth of its operating mileage, the energy consumption of the subway system is exploding and its total energy consumption is already huge. The increase in energy consumption has not only increased The pressure of operating units also has an impact on the country's energy conservation and emission reduction strategies. Among them, the energy consumption of train operation accounts for a very important part of the energy consumption of the subway system. Therefore, how to analyze and calculate the energy consumption of subway train operation in detail has important significance for the optimization of the energy consumption of the subway system.
This thesis studies the calculation of the energy consumption of multiple subway trains under the influence of the dynamic characteristics of the number of trains and the running direction in the same power supply interval within a running interval. This paper first analyzes the dynamic model of a single train in detail, and gives the results of different train traction strategies. The simulation method of single train running curve, combined with the traction braking characteristic curve of the train to analyze the power requirements of trains in different states, and based on the characteristics of the subway traction power supply system, the basic circuit of each component of the subway traction power supply system was established, etc. Effect model.
Then, the dynamic time-varying characteristics of the subway system operation are used to discrete the single train operation scene into a dynamic multi-train operation scene, and the corresponding scene is combined with the equivalent model of the subway traction power supply system to fully consider the use of regenerative braking and traction grid voltage. The impact of the braking process, combined with the switching mechanism of regenerative braking and resistance braking inputs, proposes a dynamic multi-train operation scenario energy consumption calculation model that combines the train dynamics model and the traction power supply model, and gives the circuit power flow calculation method to A model solving algorithm based on Gauss-Seidel iterative method is developed to achieve accurate energy consumption calculation under dynamic multi-train operation scenarios.
Finally, based on the above research ideas, this article builds a dynamic energy consumption simulation calculation and analysis platform for dynamic multi-train operation scenarios. The simulation and analysis of the train operation energy consumption simulation examples on the simulation platform demonstrates that the dynamic multi-train operation scenarios designed in this thesis can The energy consumption calculation method and simulation platform can analyze all the train operation scenarios existing in the same power supply interval within an operation interval, and can realize the accurate calculation of train operation energy consumption from the perspective of power energy consumption. The choice of manipulation strategy and train scheduling have important guiding significance.
 

分类号:

 U284.48    

总页码:

 69    

参考文献总数:

 52    

参考文献:

[1] 中国轨道交通协会. 2019年中国内地城轨交通线路概况[EB/OL]. http://www.camet.org.cn/index.php?m=content&c=index&a=show&catid=43&id=19329

[2] 刘小玲, 薛亮. 城市轨道交通节能问题研究[J]. 资源节约与环保, 2017(1).

[3] 王子甲, 陈峰, 施仲衡. 北京城市轨道交通中远期能耗预测研究[J]. 中国铁道科学, 2013(03):135-138.

[4] 戴华明, 宋杰, 李照星. 北京市城市轨道交通能耗调研与分析[J]. 设备监理, 2015(03):38-42.

[5] 盖正民, 张伟, 杨永耀. 轨道交通能源管理数据挖掘[C]. 第十二届中国智能交通年会大会论文集. 2017.

[6] Ichikawa K . Application of Optimization Theory for Bounded State Variable Problems to the Operation of Train[J]. Bulletin of JSME, 1968, 11(47):857-865.

[7] Milroy, Ian P . Aspects of automatic train control[J]. © ian peter milroy, 1980.

[8] Strobel H , Horn P . Energy Optimum on Board Microcomputer Control of Train Operation[J]. IFAC Proceedings Volumes, 1984, 17(2):2889-2894.

[9] Khmelnitsky E . On an Optimal Control Problem of Train Operation[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL AC, 2000.

[10] Goverde R M P , Scheepmaker G M . Running time supplements : Energy-efficient train control versus robust timetables[J]. 2015.

[11] Hoang H , Polis M , Haurie A . Reducing energy consumption through trajectory optimization for a metro network[J]. Automatic Control IEEE Transactions on, 1975, 20(5):590-595.

[12] Chang C S , Sim S S . Optimising train movements through coast control using genetic algorithms[J]. IEE Proceedings-Electric Power Applications, 1997, 144(1):65-0.

[13] Franke R , Terwiesch P , Meyer M . An algorithm for the optimal control of the driving of trains[C]// Decision and Control, 2000. Proceedings of the 39th IEEE Conference on. IEEE, 2000.

[14] Wong K K , Ho T K . Coast control for mass rapid transit railways with searching methods[J]. IEE Proceedings-Electric Power Applications, 2004, 151(3):365-0.

[15] Lu S, Hillmansen S, Ho T K, et al. Single-Train Trajectory Optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2):743-750.

[16] 马林, 张进思, 李群湛. 电牵引列车操纵优化策略及其仿真研究[J]. 铁道学报, 1991(S1):109-118.

[17] 金炜东, 靳蕃, 李崇维, et al. 列车优化操纵速度模式曲线生成的智能计算研究[J]. 铁道学报, 1998(05):48-53.

[18] 朱金陵, 李会超, 王青元, et al. 列车节能控制的优化分析[J]. 中国铁道科学, 2008(02):106-110.

[19] 崔恒斌, 冯晓云, 王青元, et al. 制动利用率对高速列车节能操纵策略的影响[J]. 铁道学报, 2012, 34(8):13-19.

[20] 仲维锋, 徐洪泽. 基于控制参数化方法的列车节能操纵优化研究[J]. 铁道学报, 2017(06):75-82.

[21] Gordon, S.P, Lehrer, et al. Coordinated train control and energy management control strategies[C]// Railroad Conference. IEEE, 1998.

[22] Albrecht T . Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control[J]. Computers in Railways, 2004, 769(769):100-107.

[23] Yang X , Ning B , Li X , et al. A Subway Timetable Optimization Model for Maximizing the Utilization of Recovery Energy[C]// 2013 Joint Rail Conference. 2013.

[24] Nag B , Pal M N . Optimal Design of Timetables to Maximize Schedule Reliability & Minimize Energy Consumption, Rolling Stock and Crew Deployment[J]. Social Science Electronic Publishing, 2013.

[25] Liu J , Guo H , Yu Y . Research on the Cooperative Train Control Strategy to Reduce Energy Consumption[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, PP(99):1-9.

[26] 周剑斌, 苏浚, 何泳斌. 地铁列车运行再生能利用的研究[J]. 城市轨道交通研究, 2004, 7(4).

[27] 步兵, 丁奕, 李辰岭, et al. 列车控制与行车调度一体化节能方法的研究[J]. 铁道学报, 2013, 35(12):64-71.

[28] 杨欣. 面向节能的城市轨道交通列车运行图优化研究[D]. 2016.

[29] 彭其渊, 李文新, 王艺儒, et al. 基于再生制动的地铁列车开行策略研究[J]. 铁道学报, 2017(03):11-17.

[30] 步兵, 滕昌敏, 陈尔超, et al. 城市轨道交通多车协作节能控制方法研究[J]. 铁道学报, 2018, v.40;No.250(08):47-55.

[31] 仲维锋, 基于控制变量参数化的列车节能运行优化[D], 北京: 北京交通大学, 2019.

[32] Lu S , Weston P , Hillmansen S , et al. Increasing the Regenerative Braking Energy for Railway Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6):2506-2515.

[33] Álvaro J. López-López, Ramón R. Pecharromán, Antonio Fernández-Cardador, et al. Assessment of energy-saving techniques in direct-current-electrified mass transit systems[J]. Transportation Research Part C Emerging Technologies, 2014, 38:85–100.

[34] 许爱国. 城市轨道交通再生制动能量利用技术研究[D]. 南京:南京航空航天大学, 2009.

[35] 荀径, 唐涛, 宋晓美, et al. 再生制动条件下的城轨列车节能驾驶综合模型[J]. 中国铁道科学, 2015, 36(1):104-110.

[36] 唐海川, 王青元, 冯晓云. 地铁列车追踪运行的节能控制与分析[J]. 铁道学报, 2015(1).

[37] 唐海川. 城市轨道交通多列车运行节能优化控制[D]. 2015.

[38] 杨俭, 李发扬, 宋瑞刚, 等. 城市轨道交通车辆制动能量回收技术现状及研究进展[J]. 铁道学报, 2011(2): 26-33.

[39] Tian Z , Weston P , Zhao N , et al. System energy optimisation strategies for metros with regeneration[J]. Transportation Research Part C Emerging Technologies, 2017, 75:120-135.

[40] 郑瞳炽, 张明锐. 城市轨道交通牵引供电系统[M]. 中国铁道出版社, 2000.

[41] 徐万兵. 基于再生制动的城市轨道交通节能技术研究[D]. 2018.

[42] 邢颖, 程学庆, 鲜楚逸, et al. 基于再生制动能量吸收的地铁列车 节能运行研究[J]. 综合运输, 2019(10).

[43] 许爱国, 谢少军, 姚远, et al. 基于超级电容的城市轨道交通车辆再生制动能量吸收系统[J]. 电工技术学报, 2010(03):121-127.

[44] 池耀田. 城轨交通系统储能器的发展[J]. 都市快轨交通(3):6-11.

[45] 宿硕. 城轨列车节能驾驶策略与储能式再生能量利用研究[D]. 2018.

[46] 冯剑冰. 再生制动能量利用方式的探讨[J]. 城市轨道交通研究(05):51-53+57.

[47] 成利刚. 多质点动力学模型在列车模拟驾驶系统中的应用与实现[D]. 兰州交通大学, 2014.

[48] 陈荣武, 诸昌钤, 刘莉. 基于CBTC的城市轨道交通列车能耗算法及仿真[J]. 计算机应用研究, 2011, 28(6):2126-2129.

[49] 王亚玲, 吴命利. 直流牵引变电所在供电系统运行仿真中的建模[J]. 电气化铁道, 2005(04):7-10.

[50] 李新, 彭怡, 赵晶晶, et al. 分布式电源并网的潮流计算[J]. 电力系统保护与控制, 2009(17):85-88+94.

[51] 李国庆, 边竞, 王鹤, 等. 直流电网潮流分析与控制研究综述[J]. 高电压技术, 2017, 43(4):1067-1079

[52] 李磊. 基于直流牵引供电计算的地铁列车节能运行优化研究[D]. 北京交通大学. 2018

馆藏位置:

 U284.48 S 2020    

开放日期:

 2020-06-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式