- 无标题文档
查看论文信息

中文题名:

 第二代高温超导REBCO带材超导接头的制备及性能研究    

姓名:

 王明江    

一卡通号:

 0000208824    

论文语种:

 中文    

学科名称:

 工学 - 电气工程 - 电工理论与新技术    

公开时间:

 公开    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西南交通大学    

院系:

 电气工程学院    

专业:

 电气工程    

第一导师姓名:

 赵勇    

第一导师单位:

 西南交通大学    

完成日期:

 2019-09-30    

答辩日期:

 2020-05-29    

外文题名:

 THE STUDY ON THE FABRICATION AND PROPERTY OF SUPERCONDUCTING JOINT FOR THE SECOND GENERATION HIGH TEMPERATURE SUPERCONDUCTING REBCO TAPES    

中文关键词:

 REBCO带材 ; 超导接头 ; 金属稳定层剥离 ; 人工钉扎中心 ; 熔融原子扩散 ; 织构融合 ; 非晶前驱中间介质    

外文关键词:

 REBCO tapes ; superconducting joint ; Cu/Ag stabilizers ; artificial pinning center ; melting atomic diffusion ; texture fusion ; amorphous precursor intermediate    

中文摘要:

                                                摘   要
      以YBCO为代表的高温超导实用材料不仅具有液氮区的工作温度, 且上临界场也高达100 T以上,为其在强电应用领域奠定了优良的基础,具有广阔的前景。基于高温超导体REBa2Cu3O7-x(简称REBCO, RE = Y、Sm、Gd等稀土元素)的第二代高温超导带材兼备了REBCO超导体优良的基础物理特性和涂层导体的双轴织构优势,因而在液氮温区表现出优异的超导性能(高的临界电流密度和不可逆场)以及优异的机械强度等,因而在超导强电应用领域比第一代高温超导带材更具前景。为了解决带材在实际应用中超导线材制备的长度限制问题,特别是为了实现基于第二代高温超导带材的高温超导磁体的持续电流运行模式,第二代高温超导带材的超导接头技术受到人们广泛的关注和研究。
       本论文的具体工作围绕着实现第二代高温超导涂层导体超导接头的物理化学工艺探索所展开,从超导接头的工艺探索、接头制备、物理性能等方面开展了较为系统的研究。论文的主要工作包括如下内容:
       针对第二代高温超导REBa2Cu3O7-x(REBCO)带材超导接头制备的需求,系统研究了REBCO带材金属稳定层的剥离工艺。开发出了一种廉价、快速的化学方法用以剥离Y0.5Gd0.5Ba2Cu3O7-x带材的金属Cu/Ag稳定层,并深入研究了剥离过程的化学反应机制及其引起带材Ic衰减的具体原因。采用该方法剥离的带材,其超导层的结构和超导性能几乎没有受到影响,为后续的超导接头的制备奠定了可靠的基础。
       激光打孔技术作为解决第二代高温超导带材超导接头区提供渗氧通道的途径,需要弄清带材表面加工的微孔对其自身超导性能的影响。通过系统的电磁性能测量并结合有限元仿真手段,研究了YGdBCO带材微孔阵列结构(微孔的直径、分布间距及密度等)对带材超导性能(Ic、Tc、最大抗磁信号、低场下Ic的各向异性)及交流损耗的影响,发现优化后的微孔结构可提高带材在低场下的磁通钉扎特性且对带材自身的交流损耗有显著影响。
       研究了熔融原子扩散技术在制备第二代高温超导YGdBCO带材超导接头过程中的相关特性和机理,并应用纯氧气氛优化了接头的超导性能,成功制备出了第二代高温超导YGdBCO带材的超导接头。研究中发现超导层表面粗糙度是影响超导接头表面微观结构和超导电流输运特性的关键因素之一,提出了超导接头处超导电流输运特性主要由超导弱连接特性所支配的理论解释和相关模型。采用分子动力学模拟对接头区域原子扩散行为进行了模拟,取得了与实验结果相一致的结果。
       探索了制备第二代高温超导YGdBCO带材超导接头的新途径—“液相辅助烧结和织构融合”接头技术。与熔融原子扩散技术制备第二代高温超导带材接头不同,这项新技术是通过YGdBCO熔融分解产生的液相来提高接头界面处的结合强度,并通过这些液相的再结晶生长形成织构界面,因而该技术具有对YGdBCO层表面粗糙度的不敏感等特点。初步研究显示,采用该新技术可以制备出具有超导性能的第二代高温超导YGdBCO带材的超导接头,并展示出有较大的优化潜力。

外文摘要:

                                                 Abstract
    Based on the high temperature superconductor REBa2Cu3O7-x (referred to, RE=Y, Sm, Gd and other rare earth elements), the second generation high temperature superconducting possess both the excellent basic physical properties of REBCO superconductors and the biaxial texture advantages of coated conductors. Due to this fact, the outstanding superconducting properties of REBCO tapes are exhibited in the liquid nitrogen temperature, which including high critical current density and irreversible field, excellent mechanical strength etc. Therefore, the REBCO tapes are more promising than the first generation high temperature superconducting tapes in the field of superconducting high current applications. In order to solve the problem of length limitation for the preparation of superconducting tapes in practical applications and realize the persistent current operation mode of the REBCO superconducting magnet especially, the superconducting joint of REBCO tapes is paid extensive attention and research.
    The specific content of this thesis focuses on the physical and chemical process exploration of the realization of the second-generation high temperature superconducting coated conductor superconducting joint. The systematic research has been carried out from the aspects of process exploration, preparation and physical properties of superconducting joint. The main work of the paper is as follows:
    Aiming at the requirements for the preparation of superconducting joints of the second-generation high temperature superconducting REBa2Cu3O7-x (REBCO) tapes, the eliminating process of the metal stabilizer of REBCO tapes was systematically studied. Developed a cheap and fast chemical method to etch the metal Cu/Ag stabilizer of Y0.5Gd0.5Ba2Cu3O7-x tapes, and deeply studied the chemical reaction mechanism of the etching process and the specific reason of the Ic attenuation of the YGdBCO tapes. The structure of the superconducting layer and the superconducting properties of the YGdBCO tapes etched by this method are hardly affected, which lays a solid foundation for the subsequent preparation of superconducting joints.
    Laser drilling technology is an effective method to provide oxygen diffusion channels for the superconducting joint of tapes. In this paper, the effect of microholes processed on the surface of YGdBCO tapes on its own superconducting performance was systematically studied. The systemic electromagnetic performance measurement and the finite element simulation methods were used to study the influence of the microholes array structure (the diameter of microholes, distribution distance and density) on the superconducting performance (Ic, Tc, maximum diamagnetic signal, Ic anisotropy under low field) and AC loss of the YGdBCO tapes. It was found that the optimized microholes structure can improve the magnetic flux pinning characteristics of the YGdBCO tapes under low field and have a significant impact on the AC loss of the YGdBCO tapes.
     In the research of preparing the superconducting joint of YGdBCO tapes by the fusion atom diffusion technology, the superconducting performance of the joints was optimized by using pure oxygen atmosphere, and the superconducting joint of YGdBCO tapes were successfully prepared. It was found that the surface roughness of the superconducting layer was one of the key factors affecting the surface microstructure and supercurrent transport characteristics of the superconducting joint. The dominant theoretical explanations and related models was proposed that the supercurrent transport characteristics at the superconducting joint are mainly caused by the superconducting weak connection characteristics. The molecular dynamics simulation was used to simulate the atomic diffusion behavior at joint region, and the results were consistent with experimental results.
     A novel method for preparing the superconducting joints of YGdBCO tapes was explored which called “liquid-phase-assisted sintering and texture fusion” technology. Unlike the fusion atom diffusion technology, this new technology uses the liquid phase generated by the melted YGdBCO to improve the bonding strength at the joint interface, and then form a textured interface by recrystallizing and growing these liquid phases. Therefore, this technology has the characteristics of insensitivity to the surface roughness of YGdBCO layer. Preliminary research shows that the new technology can be used to prepare the superconducting joints of YGdBCO tapes with superconducting properties, and has demonstrated great optimization potential.

分类号:

 TM26+2    

总页码:

 159    

参考文献总数:

 223    

参考文献:

参考文献

[1] Kamerlingh Onnes H. The resistance of pure mercury at helium temperatures[J]. Commun. Phys. Lab. Univ. Leiden, b, 1911, 120.

[2] 南和礼. 超导磁体设计基础 [M]. 国防工业出版社, 2007.

[3] 王秋良. 高磁场超导磁体科学[M]. 科学出版社, 2008.

[4] Cheng J, Liu J, Ni Z et al. Fabrication of NbTi superconducting joints for 400-MHz NMR application[J]. IEEE Trans. Appl. Supercond, 2012, 22(2): 4300205.

[5] McIntyre P, Wu Y, Liang G et al. Study of Nb3Sn superconducting joints for very high magnetic field NMR spectrometers[J]. IEEE Trans. Appl. Supercond, 1995, 5(2): 238-241.

[6] Yoo B H, Kim J C, Kim Y G et al. Investigation of multifilament MgB2 superconducting joint technique for development of MRI magnets[J]. Rev. Sci. Instrum, 2018, 89(9): 094701.

[7] Chen P, Trociewitz U P, Davis D S et al. Development of a persistent superconducting joint between Bi-2212/Ag-alloy multifilamentary round wires[J]. Supercond. Sci. Technol, 2016, 30(2): 025020.

[8] Pan Y, Wu W, Zhen S et al. Investigation on Current Distribution and Joint Resistance-Overlap Length Relationship for Non-Superconducting Joints[J]. IEEE Trans. Appl. Supercond, 2018, 29(2): 1-5.

[9] Martino E, Bocchi M, Angeli G et al. Assembly and soldering procedure of nonstabilized YBCO coils for 1000 A SFCL[J]. IEEE Trans. Appl. Supercond, 2017, 28(1): 1-4.

[10] Tsui Y, Surrey E, Hampshire D. Soldered joints-An essential component of demountable high temperature superconducting fusion magnets[J]. Supercond. Sci. Technol, 2016, 29(7): 075005.

[11] Maebatake T, Ichinose Y, Yamada K et al. Joint properties of REBCO coated conductors[J]. Physica C, 2011, 471(21-22): 987-989.

[12] Zhang Y, Duckworth R C, Ha T T et al. Solderability study of RABiTS-based YBCO coated conductors[J]. Physica C, 2011, 471(15-16): 437-443.

[13] Onnes H K. Further experiments with Liquid Helium. G. On the Electrical Resistance of Pure Metals, etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears[M]. Through Measurement to Knowledge. Springer, Dordrecht, 1991: 267-272.

[14] Meissner W, Ochsenfeld R. Ein neuer effekt bei eintritt der supraleitfähigkeit[J]. Naturwissenschaften, 1933, 21(44): 787-788.

[15] Patterson J D, Bailey B C. Solid-state physics: introduction to the theory[M]. Springer Science & Business Media, 2007.

[16] Superconductivity: Volume 1: Conventional and Unconventional Superconductors Volume 2: Novel Superconductors[M]. Springer Science & Business Media, 2008.

[17] London F, London H. The electromagnetic equations of the supraconductor[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 149(866): 71-88.

[18] Pippard A B. Field variation of the superconducting penetration depth[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 203(1073): 210-223.

[19] 张裕恒. 超导物理[M]. 中国科学技术大学出版社, 2009.

[20] Ginzburg V L, Landau L D. Phenomenological theory[J]. J. Exp. Theor. Phys. USSR, 1950, 20: 1064.

[21] Abrikosov A A. On the magnetic properties of superconductors of the second group[J]. Sov. Phys. JETP, 1957, 5: 1174-1182.

[22] Maxwell E. Isotope effect in the superconductivity of mercury[J]. Phys. Rev, 1950, 78(4): 477.

[23] Fröhlich H. Theory of the superconducting state-I. The ground state at the absolute zero of temperature[J]. Phys. Rev, 1950, 79(5): 845.

[24] Cooper L N. Bound electron pairs in a degenerate Fermi gas[J]. Phys. Rev, 1956, 104(4): 1189.

[25] Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity[J]. Phys. Rev, 1957, 108(5): 1175.

[26] Sólyom J. Fundamentals of the Physics of Solids: Volume 1: Structure and Dynamics[M]. Springer Science & Business Media, 2007.

[27] Matthias B T, Geballe T H, Geller S et al. Superconductivity of Nb3Sn[J]. Phys. Rev, 1954, 95(6): 1435.

[28] Josephson B D. Possible new effects in superconductive tunnelling[J]. Phys. lett, 1962, 1(7): 251-253.

[29] Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189-193.

[30] 赵忠贤, 陈立泉, 杨乾声等. Ba-Y-Cu 氧化物液氮温区的超导电性[J]. 科学通报, 1987, 6(412): 14.

[31] Wu M K, Ashburn J R, Torng C J et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Phys. Rev. Lett, 1987, 58(9): 908.

[32] Michel C, Hervieu M, Borel M M et al. Superconductivity in the Bi-Sr-Cu-O system[J]. Zeitschrift für Physik B Condensed Matter, 1987, 68(4): 421-423.

[33] Maeda H, Tanaka Y, Fukutomi M et al. A new high-Tc oxide superconductor without a rare earth element[J]. J. J. Appl. Phys, 1988, 27(2A): L209.

[34] Sheng Z Z, Hermann A M. Bulk superconductivity at 120 K in the Tl-Ca/Ba-Cu-O system[J]. Nature, 1988, 332(6160): 138.

[35] Schilling A, Cantoni M, Guo J D et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363(6424): 56.

[36] Chu C W, Gao L, Chen F et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures[J]. Nature, 1993, 365(6444): 323.

[37] Larbalestier D, Gurevich A, Feldmann D M et al. High-Tc superconducting materials for electric power applications[M]. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011: 311-320.

[38] Blanco-Canosa S, Frano A, Schierle E et al. Resonant x-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x[J]. Phys. Rev. B, 2014, 90(5): 054513.

[39] 金建勋. 高温超导体及其强电应用技术[M]. 冶金工业出版社, 2009.

[40] 王银顺. 超导电力技术基础[M]. 科学出版社, 2011.

[41] Ichinose A. Recent progress in high-Tc superconducting wires and their applications for electric power apparatus[J]. Ieice. Electron. Expr, 2012, 9(14): 1172-1183.

[42] Gurevich A. Iron-based superconductors at high magnetic fields[J]. Rep. Prog. Phys, 2011, 74(12): 124501.

[43] Song H, Brownsey P, Zhang Y et al. 2G HTS coil technology development at SuperPower[J]. IEEE Trans. Appl. Supercond, 2012, 23(3): 4600806-4600806.

[44] Iijima Y, Tanabe N, Kohno O et al. In‐plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates[J]. Appl. Phys. Lett, 1992, 60(6): 769-771.

[45] He Q, Christen D K, Budai J D et al. Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes: new substrates for high-current, high-temperature superconductors[J]. Physica C, 1997, 275(1-2): 155-161.

[46] Rupich M W, Li X, Sathyamurthy S et al. Second generation wire development at AMSC[J]. IEEE Trans. Appl. Supercond, 2012, 23(3): 6601205.

[47] Iijima Y, Kakimoto K, Sutoh Y et al. Development of long Y-123 coated conductors by ion-beam-assisted-deposition and the pulsed-laser-deposition method[J]. Supercond. Sci. Technol, 2004, 17(5): S264.

[48] 冯峰, 史锴, 瞿体明等. 制备高温超导涂层导体的技术路线分析[J]. 中国材料进展, 2011, 30(3): 9-15.

[49] Chen Y, Xiong X, Xie Y et al. Recent progress in second-generation HTS wire technology at SuperPower[J]. MRS Online Proceedings Library Archive, 2008, 1099.

[50] Prusseit W, Bauer M, Große V et al. Working around HTS Thickness Limitations-towards 1000 A/cm Class Coated Conductors[J]. Physics Procedia, 2012, 36: 1417-1422.

[51] Zhang Y, Lehner T F, Fukushima T et al. Progress in production and performance of second generation (2G) HTS wire for practical applications[J]. IEEE Trans. Appl. Supercond, 2014, 24(5): 1-5.

[52] Park Y J, Lee M W, Oh Y K et al. Laser drilling: enhancing superconducting joint of GdBa2Cu3O7-δ coated conductors[J]. Supercond. Sci. Technol, 2014, 27(8): 085008.

[53] Yoo B H, Kim J C, Kim Y G et al. Investigation of multifilament MgB2 superconducting joint technique for development of MRI magnets[J]. Rev. Sci. Instrum, 2018, 89(9): 094701.

[54] Park D K, Ahn M C, Kim H M et al. Analysis of a joint method between superconducting YBCO coated conductors[J]. IEEE Trans. Appl. Supercond, 2007, 17(2): 3266-3269.

[55] Shin H S, Dedicatoria M J. Comparison of the bending strain effect on transport property in lap-and butt-jointed coated conductor tapes[J]. IEEE Trans. Appl. Supercond, 2010, 20(3): 1541-1544.

[56] Chang K S, Jo H C, Kim Y J et al. An experimental study on the joint methods between double pancake coils using YBCO coated conductors[J]. IEEE Trans. Appl. Supercond, 2010, 21(3): 3005-3008.

[57] Tsui Y, Surrey E, Hampshire D. Superconducting and mechanical properties of low-temperature solders for joints[J]. IEEE Trans. Appl. Supercond, 2016, 26(3): 1-4.

[58] Baldan C A, Oliveira U R, Shigue C Y et al. Evaluation of electrical properties of lap joints for BSCCO and YBCO tapes[J]. IEEE Trans. Appl. Supercond, 2009, 19(3): 2831-2834.

[59] Kim H S, Kwon N Y, Chang K S et al. Joint characteristics of the YBCO coated conductor (CC) by chemical etching[J]. IEEE Trans. Appl. Supercond, 2009, 19(3): 2835-2838.

[60] Chang K S, Park D K, Yang S E et al. Experimental analysis of a splice method between YBCO coated conductors on various bending diameters[J]. IEEE Trans. Appl. Supercond, 2010, 20(3): 1577-1580.

[61] Shin H S, Dizon J R C, Oh S S et al. Bending strain characteristics of the transport property in lap-jointed coated conductor tapes[J]. IEEE Trans. Appl. Supercond, 2009, 19(3): 2991-2994.

[62] Miao Q, Zhu J M, Cheng M et al. Fabrication and characteristic tests of a novel low-resistance joint structure for YBCO coated-conductors[J]. IEEE Trans. Appl. Supercond, 2014, 25(3): 1-5.

[63] Chang K S, Kim H, Park D K et al. Joint characteristics of YBCO coated conductor by removing a metallic stabilizer[J]. IEEE Trans. Appl. Supercond, 2008, 18(2): 1220-1223.

[64] Lu J, Han K, Sheppard W R et al. Lap joint resistance of YBCO coated conductors[J]. IEEE Trans. Appl. Supercond, 2010, 21(3): 3009-3012.

[65] Walsh R P, McRae D, Markiewicz W D et al. The 77-K stress and strain dependence of the critical current of YBCO coated conductors and lap joints[J]. IEEE Trans. Appl. Supercond, 2011, 22(1): 8400406.

[66] Kim H J, Hwang Y J, Choi S et al. A study on recovery characteristics of joined tapes from the view of thermal and electrical variation for superconducting magnets[J]. IEEE Trans. Appl. Supercond, 2012, 22(3): 4703505.

[67] Kato J, Sakai N, Miyata S et al. Optimization of the diffusion joint process for the Ag layers of YBCO coated conductors[J]. Physica C, 2007, 463: 747-750.

[68] Maebatake T, Mori N, Teranishi R et al. Effects of joining conditions on the structures and properties of joints of REBCO coated conductors[J]. Physica C, 2010, 470(20): 1358-1360.

[69] Maebatake T, Ichinose Y, Yamada K et al. Joint properties of REBCO coated conductors[J]. Physica C, 2011, 471(21-22): 987-989.

[70] Yanagisawa Y, Piao R, Iguchi S et al. Operation of a 400 MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: towards an ultra-compact super-high field NMR spectrometer operated beyond 1 GHz[J]. J. Magn. Reson, 2014, 249: 38-48.

[71] Barns R L, Laudise R A. Stability of superconducting YBa2Cu3O7 in the presence of water[J]. Appl. Phys. Lett, 1987, 51(17): 1373-1375.

[72] Lo W. Recent progress in large-grain REBCO melt texturing[J]. JOM, 2000, 52(6): 18-21.

[73] Park Y, Lee M, Ann H, et al. A superconducting joint for GdBa2Cu3O7-δ coated conductors[J]. Npg. Asia. Mater, 2014, 6(5): e98.

[74] Takahashi K, Hase T, Awaji S et al. Performance of an HTS persistent current system for REBCO pancake coil[J]. IEEE Trans. Appl. Supercond, 2017, 28(3): 1-4.

[75] Furukawa Electric Co. Ltd, Ichihara, Japan. Development of persistent current technology using rare earth superconducting wire materials-Progress towardrealization of MRI magnets using HTS wire materials, News Release, Apr.2016. [Online].Available:www.furukawa.co.jp/en/release/2016/kenkai_160427.html.

[76] Jin X, Yanagisawa Y, Maeda H, et al. Development of a superconducting joint between a GdBa2Cu3O7-δ coated conductor and YBa2Cu3O7-δ bulk: towards a superconducting joint between RE(Rare Earth) Ba2Cu3O7-δ-coated conductors[J]. Supercond. Sci. Technol, 2015, 28(7): 075010.

[77] Jin X, Yanagisawa Y, Maeda H. Measurement of Persistent Current in a Gd123 Coil With a Superconducting Joint Fabricated by the CJMB Method[J]. IEEE Trans. Appl. Supercond, 2018, 28(3): 1-4.

[78] Ohki K, Nagaishi T, Kato T et al. Fabrication, microstructure and persistent current measurement of an intermediate grown superconducting (iGS) joint between REBCO-coated conductors[J]. Supercond. Sci. Technol, 2017, 30(11): 115017.

[79] Routbort J L, Rothman S J, Chen N et al. Site selectivity and cation diffusion in YBa2Cu3O7-δ[J]. Phys. Rev. B, 1991, 43(7): 5489.

[80] Rothman S J, Routbort J L, Welp U et al. Anisotropy of oxygen tracer diffusion in single-crystal YBa2Cu3O7-δ[J]. Phys. Rev. B, 1991, 44(5): 2326.

[81] Specht E D, Sparks C J, Dhere A G et al. Effect of oxygen pressure on the orthorhombic-tetragonal transition in the high-temperature superconductor YBa2Cu3Ox[J]. Phys. Rev. B, 1988, 37(13): 7426.

[82] Nomura S, Yoshino H, Ando K.Phase diagram of the system YBa2Cu3O7-δ- BaCuO2CuO[J]. J Cryst Growth, 1988, 92(3-4): 682-686.

[83] Lay K W, Renlund G M. Oxygen pressure effect on the Y2O3-BaO-CuO liquidus[J]. J. Am. Ceram. Soc, 1990, 73(5): 1208-1213.

[84] Williams R K, Alexander K B, Brynestad J et al. Oxidation induced decomposition of YBa2Cu3O7-x[J]. J. Appl. Phys, 1991, 70(2): 906-913.

[85] Maeda T, Yoshimoto M, Shimozono K et al. Two-dimensional laser molecular beam epitaxy and carrier modulation of infinite-layer BaCuO2 films[J]. Physica C, 1995, 247(1-2): 142-146.

[86] Heinemann M, Eifert B, Heiliger C. Band structure and phase stability of the copper oxides Cu2O, CuO and Cu4O3[J]. Phys. Rev. B, 2013, 87(11): 115111.

[87] Nakamura M, Yamada Y, Shiohara Y. Crystal growth of YBa2Cu3O7 by the SRL-CP method under low oxygen partial pressure atmosphere[J]. J. Mater. Res, 1994, 9(8): 1946-1951.

[88] Murakami M, Fujimoto H, Oyama T et al. Melt processing of high-temperature s uperconductors[M]. High-temperature superconductors.Materials aspects. Proceedings. Vol. 1. 1991.

[89] Kim H S, Song J B, Kwon N Y et al. The influence of heat-treatment and oxygenation annealing on the superconducting properties of YBCO coated conductors[J]. Supercond. Sci. Technol, 2009, 22(12): 125016.

[90] Kawashima J, Yamada Y, Hirabayashi I. Critical thickness and effective thermal expansion coefficient of YBCO crystalline film[J]. Physica C, 1998, 306(1-2): 114-118.

[91] 王春华. 机械设计基础[M]. 北京理工大学出版社, 2007.

[92] Bautista Z M, Shin H S. Effect of Cu Edges on Delamination Strength in Cu-Stabilized CC Tapes Under Transverse Tension at 77 K[J]. IEEE Trans. Appl. Supercond, 2019, 29(5): 1-4.

[93] Miyazaki H, Iwai S, Tosaka T et al. Delamination strengths of different types of REBCO-coated conductors and method for reducing radial thermal stresses of impregnated REBCO pancake coils[J]. IEEE Trans. Appl. Supercond, 2015, 25(3): 1-5.

[94] Jeong H, Park H, Kim S et al. De-lamination characteristics of coated conductor for conduction cooled HTS coil[J]. IEEE Trans. Appl. Supercond, 2011, 22(3): 7700804.

[95] Liu L, Zhu Y, Yang X et al. Delamination properties of YBCO tapes under shear stress along the width direction[J]. IEEE Trans. Appl. Supercond, 2016, 26(6): 1-6.

[96] Kato J Y, Sakai N, Tajima S et al. Diffusion joint of YBCO coated conductors using stabilizing silver layers[J]. Physica C, 2006, 445: 686-688.

[97] Song H, Hunte F, Schwartz J. On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa2Cu3O7-x coated conductors by quenching[J]. Acta Mater, 2012, 60(20): 6991-7000.

[98] Büyüklimanli T H, Simmons J H. Surface degradation of YBa2Cu3O7-δ superconductor on exposure to air and humidity[J]. Phys. Rev. B, 1991, 44(2): 727.

[99] Low I M, Low S S, Klauber C. Chemical reactivity of YBa2Cu3O7-δ and Bi(Pb)SrCaCuO superconductors in water[J]. J. Mater Sci lett, 1993, 12(20): 1574-1576.

[100] Fetisov A V, Kozhina G A, Estemirova S K et al. XPS Study of Mechanically Activated YBa2Cu3O6[J]. J. Spectrosc, 2013, 2013.

[101] Bachtler M, Lorenz W J, Schindler W et al. Electrochemical behavior of YBa2Cu3O7[J]. Mod. Phys. Lett. B, 1988, 2(06): 819-828.

[102] Roa J J, Jiménez-Piqué E, Díaz J et al. Corrosion induced degradation of textured YBCO under operation in high humidity conditions[J]. Surf. Coat. Tech, 2012, 206(19-20): 4256-4261.

[103] Fetisov A V, Kozhina G А, Estemirova S K et al. XPS study of the chemical stability of DyBa2Cu3O6+δ superconductor[J]. Physica C, 2015, 508: 62-68.

[104] # # #, Wang W T, Liu L, et al. Influence of chemical etching and heat-treatment on the structure and superconducting properties of YGdBCO coated conductors[C]. Journal of Physics: Conference Series. IOP Publishing, 2017, 871(1): 012041.

[105] 傅献彩,沈文霞,姚天扬等. 物理化学[M]. 高等教育出版社, 2006.

[106] Park Y, Shin H J, Kim Y G et al. Effects of melting diffusion and annealing in oxygen on superconducting characteristics of GdBCO coated conductors: preliminary results[J]. IEEE Trans. Appl. Supercond, 2012, 23(3): 6600804.

[107] Murugesan M, Obara H, Yamasaki H et al. The influence of external factors on the corrosion resistance of high temperature superconductor thin films against moisture[J]. J. Appl. Phys 2006, 100(11): 113912.

[108] Murugesan M, Obara H, Nakagawa Y et al. High corrosion stability of DyBa2Cu3Oz thin films relative to YBa2Cu3Oz films: A possible relation between corrosion and c-axis correlated extended defects[J]. Appl. Phys. Lett, 2006, 88(25): 252509.

[109] Huong P V. Microstructure of high temperature superconductor thin films as studied by micro-Raman spectroscopy[J]. Physica C, 1991, 180(1-4): 128-131.

[110] Ye J, Nakamura K. Quantitative structure analyses of YBa2Cu3O7-δ thin films: Determination of oxygen content from x-ray diffraction patterns[J]. Phys. Rev. B, 1993, 48(10): 7554.

[111] Shapovalov A P, Boguslavskij Y M, Ruban A I et al. Oxygen lattice disorder in YBa2Cu3Ox epitaxial films with enlarged c-axis lattice parameter[J]. Supercond. Sci. Technol, 1992, 5(5): 283.

[112] Murugesan M, Obara H, Nakagawa Y et al. Influence of MgO substrate annealing on the microwave properties of laser ablated YBa2Cu3Oz thin films[J]. Superconductor Science and Technology, 2003, 17(1): 113.

[113] Minamikawa T, Suzuki T, Yonezawa Y et al. Annealing temperature dependence of MgO substrates on the quality of YBa2Cu3Ox films prepared by pulsed laser ablation[J]. J. J. Appl. Phys, 1995, 34(8R): 4038.

[114] Matijasevic V, Rosenthal P, Shinohara K, et al. Reactive coevaporation of YBaCuO superconducting films[J]. J. Mater. Res, 1991, 6(4): 682-698.

[115] Jorgensen J D, Veal B W, Kwok W K et al. Structural and superconducting properties of orthorhombic and tetragonal YBa2Cu3O7-x: The effect of oxygen stoichiometry and ordering on superconductivity[J]. Phys. Rev. B, 1987, 36(10): 5731.

[116] Hong S, Kim K, Cheong H et al. Raman analysis of asymmetrical chains in YBa2Cu3O7-δ films[J]. Physica C, 2007, 454(1-2): 82-87.

[117] Hong S, Cheong H, Park G. Raman analysis of a YBa2Cu3O7-δ thin film with oxygen depletion[J]. Physica C, 2010, 470(7-8): 383-390.

[118] Barns R L, Laudise R A. Stability of superconducting YBa2Cu3O7 in the presence of water[J]. Appl. Phys. Lett, 1987, 51(17): 1373-1375.

[119] Vasquez R P, Hunt B D, Foote M C. Wet chemical techniques for passivation of YBa2Cu3O7-x[C]. AIP Conference Proceedings. AIP, 1990, 200(1): 189-196.

[120] Caicedo J C, Saldarraiga W, Pérez F et al. Superconducting depression in thin films of YBa2Cu3O7-δ based on the variation of the relative humidity and the time[J]. Superficies y vacío, 2007, 20(3): 6-10.

[121] Jia Q X, Anderson W A. Passivation of superconducting YBa2Cu3O7-x thin films by a wet fluoride vapor method[J]. J. Appl. Phys, 1990, 67(5): 2528-2531.

[122] Gaganidze E, Kässer T, Halbritter J. Corrosion and corrosion protection of epitaxial YBa2Cu3O7-δ films quantified by studies of surface resistance Rs(T, Hrf) as a function of temperature and radio-frequency magnetic field[J]. Supercond. Sci. Technol, 2004, 17(4): 601.

[123] Krusin-Elbaum L, Civale L, Thompson J R et al. Accommodation of vortices to columnar defects: Evidence for large entropic reduction of vortex localization[J]. Phys. Rev. B, 1996, 53(17): 11744.

[124] Cai C, Holzapfel B, Hänisch J et al. High critical current density and its field dependence in mixed rare earth (Nd,Eu,Gd)Ba2Cu3O7-δ thin films[J]. Appl. Phys. Lett, 2004, 84(3): 377-379.

[125] Haugan T, Barnes P N, Wheeler R et al. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor[J]. Nature, 2004, 430(7002): 867.

[126] Gapud A A, Kumar D, Viswanathan S K et al. Enhancement of flux pinning in YBa2Cu3O7-δ thin films embedded with epitaxially grown Y2O3 nanostructures using a multi-layering process[J]. Supercond. Sci. Technol, 2005, 18(11): 1502.

[127] MacManus-Driscoll J L, Foltyn S R, Jia Q X et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3[J]. Nature materials, 2004, 3(7): 439.

[128] Maiorov B, Baily S A, Zhou H et al. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7[J]. Nature materials, 2009, 8(5): 398.

[129] Mele P, Matsumoto K, Horide T et al. Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-x thin films (M= Zr,Sn)[J]. Supercond. Sci. Technol, 2008, 21(3): 032002.

[130] Berdiyorov G R, Milošević M V, Peeters F M. Vortex configurations and critical parameters in superconducting thin films containing antidot arrays: Nonlinear Ginzburg-Landau theory[J]. Phys. Rev. B, 2006, 74(17): 174512.

[131] Wang Y L, Latimer M L, Xiao Z L et al. Enhancing the critical current of a superconducting film in a wide range of magnetic fields with a conformal array of nanoscale holes[J]. Phys. Rev. B, 2013, 87(22): 220501.

[132] Kemmler M, Gürlich C, Sterck A et al. Commensurability effects in superconducting Nb films with quasiperiodic pinning arrays[J]. Phys. Rev. Lett, 2006, 97(14): 147003.

[133] Moshchalkov V V, Baert M, Metlushko V V et al. Pinning by an antidot lattice: The problem of the optimum antidot size[J]. Phys. Rev. B, 1998, 57(6): 3615.

[134] Moroz A N, Maksimova A N, Kashurnikov V A et al. Influence of Antidots on Transport Characteristics of HTSC[J]. IEEE Trans. Appl. Supercond, 2018, 28(4): 1-5.

[135] Jones A, George J, Fedoseev S A et al. Changing the Critical Current Density and Magnetic Properties of YBa2Cu3O7 by Using Large Antidots[J]. IEEE Trans. Appl. Supercond, 2018, 28(4): 1-5.

[136] Castellanos A, Wördenweber R, Ockenfuss G et al. Preparation of regular arrays of antidots in YBa2Cu3O7 thin films and observation of vortex lattice matching effects[J]. Appl. Phys. Lett, 1997, 71(7): 962-964.

[137] Haindl S, Hengstberger F, Weber H W et al. Hall probe mapping of melt processed superconductors with artificial holes[J]. Supercond. Sci. Technol, 2005, 19(1): 108.

[138] Kenfaui D, Sibeud P F, Louradour E et al. An effective approach for the development of reliable YBCO bulk cryomagnets with high trapped field performances[J]. Adv. Funct. Mater, 2014, 24(25): 3996-4004.

[139] Zhang M, Coombs T A. 3D modeling of high-Tc superconductors by finite element software[J]. Supercond. Sci. Technol, 2011, 25(1): 015009.

[140] Tarascon J M, McKinnon W R, Greene L H et al. Oxygen and rare-earth doping of the 90K superconducting perovskite YBa2Cu3O7-x[J]. Phys. Rev. B, 1987, 36(1): 226.

[141] Wang W T, Pu M H, Yang Y et al. Enhanced flux-pinning in fluorine-free MOD YBCO films by chemical doping[J]. Physica C, 2010, 470(20): 1261-1265.

[142] Jorgensen J D, Veal B W, Paulikas A P et al. Structural properties of oxygen deficient YBa2Cu3O7-δ[J]. Phys. Rev. B, 1990, 41(4): 1863.

[143] Blatter G, Geshkenbein V B, Larkin A I. From isotropic to anisotropic superconductors: a scaling approach[J]. Phys. Rev. Lett, 1992, 68(6): 875.

[144] Castellanos A, Wördenweber R, Ockenfuss G et al. Preparation of regular arrays of antidots in YBa2Cu3O7 thin films and observation of vortex lattice matching effects[J]. Appl. Phys. Lett, 1997, 71(7): 962-964.

[145] Wördenweber R, Dymashevski P, Misko V R. Guidance of vortices and the vortex ratchet effect in high-Tc superconducting thin films obtained by arrangement of antidots[J]. Phys. Rev. B, 2004, 69(18): 184504.

[146] Wördenweber R, Hollmann E, Schubert J et al. Regimes of flux transport at microwave frequencies in nanostructured high-Tc films[J]. Phys. Rev. B, 2012, 85(6): 064503.

[147] Wördenweber R, Hollmann E, Schubert J et al. Pattern induced phase transition of vortex motion in high-Tc films[J]. Appl. Phys. Lett, 2009, 94(20): 202501.

[148] Jiang H, Yuan T, How H et al. Measurements of anisotropic characteristic lengths in YBCO films at microwave frequencies[J]. J. Appl. Phys, 1993, 73(10): 5865-5867.

[149] Lukashenko A, Ustinov A V, Zhuravel A P et al. Laser scanning microscopy of guided vortex flow in microstructured high-T c films[J]. J. Appl. Phys, 2006, 100(2): 023913.

[150] Civale L, Maiorov B, Serquis A et al. Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films[J]. Appl. Phys. Lett, 2004, 84(12): 2121-2123.

[151] Zhou P, Wang C, Qian H et al. Frequency-Dependent Transport AC Losses of Coated Superconductors Up To Tens of Kilohertz[J]. IEEE Trans. Appl. Supercond, 2019, 29(5): 1-5.

[152] Friesen M, Gurevich A. Nonlinear current flow in superconductors with restricted geometries[J]. Phys. Rev. B, 2001, 63(6): 064521.

[153] Zermeño V M R, Habelok K, Stępień M et al. A parameter-free method to extract the superconductor’s Jc(B,θ) field-dependence from in-field current-voltage characteristics of high temperature superconductor tapes[J]. Supercond. Sci. Technol, 2017, 30(3): 034001.

[154] Hong Z, Coombs T A. Numerical modelling of AC loss in coated conductors by finite element software using H formulation[J]. J Supercond Nov Magn, 2010, 23(8): 1551-1562.

[155] Tu K N, Tsuei C C, Park S I et al. Oxygen diffusion in superconducting YBa2Cu3O7-δ oxides in ambient helium and oxygen[J]. Phys. Rev. B, 1988, 38(1): 772.

[156] Chen T G, Li S, Gao W et al. The oxygenation kinetics of (0-30%) Ag superconductors[J]. Supercond. Sci. Technol, 1998, 11(10): 1193.

[157] Kenfaui D, Sibeud P F, Louradour E et al. An effective approach for the development of reliable YBCO bulk cryomagnets with high trapped field performances[J]. Adv. Funct. Mater, 2014, 24(25): 3996-4004.

[158] Feenstra R, Lindemer T B, Budai J D et al. Effect of oxygen pressure on the synthesis of YBa2Cu3O7-x thin films by post‐deposition annealing[J]. J. Appl. Phys, 1991, 69(9): 6569-6585.

[159] Nasibulin A G, Richard O, Kauppinen E I et al. Nanoparticle synthesis by copper (II) acetylacetonate vapor decomposition in the presence of oxygen[J]. Aerosol. Sci. Tech, 2002, 36(8): 899-911.

[160] Stadnichenko A I, Sorokin A M, Boronin A I. XPS, UPS and STM studies of nanostructured CuO films[J]. J. Struct. Chem, 2008, 49(2): 341-347.

[161] Weaver J F, Hoflund G B. Surface characterization study of the thermal decomposition of Ag2O[J]. Chem. Mater, 1994, 6(10): 1693-1699.

[162] Bi H, Cai W, Kan C et al. Optical study of redox process of Ag nanoparticles at high temperature[J]. J. Appl. Phys, 2002, 92(12): 7491-7497.

[163] Rothman S J, Routbort J L, Welp U et al. Anisotropy of oxygen tracer diffusion in single-crystal YBa2Cu3O7-δ[J]. Phys. Rev. B, 1991, 44(5): 2326.

[164] Strobel P, Capponi J J, Marezio M et al. High-temperature oxygen defect equilibrium in superconducting oxide YBa2Cu3O7-x[J]. Solid. State. Commun, 1987, 64(4): 513-515.

[165] Specht E D, Sparks C J, Dhere A G et al. Effect of oxygen pressure on the orthorhombic-tetragonal transition in the high-temperature superconductor YBa2Cu3Ox[J]. Phys. Rev. B, 1988, 37(13): 7426.

[166] Lee B J, Lee D N. Thermodynamic evaluation for the Y2O3-BaO-CuOx system[J]. Journal of the American Ceramic Society, 1991, 74(1): 78-84.

[167] Liang R, Bonn D A, Hardy W N. Evaluation of CuO2 plane hole doping in YBa2Cu3 O6+x single crystals[J]. Phys. Rev. B, 2006, 73(18): 180505.

[168] Kuru Y, Usman M, Cristiani G et al. Microstructural changes in epitaxial YBa2Cu3O7-δ thin films due to creation of O vacancies[J]. J. Cryst. Growth, 2010, 312(20): 2904-2908.

[169] Nevřiva M, Pollert E, Matějková L et al. On the determination of the CuO-BaCuO2 and CuO-YCuO2.5 binary phase diagrams[J]. J. Cryst. Growth, 1988, 91(3): 434-438.

[170] Aselage T, Keefer K. Liquidus relations in Y-Ba-Cu oxides[J]. J. Mater. Res, 1988, 3(6): 1279-1291.

[171] Murakami M, Morita M, Doi K et al. Microstructural study of the Y-Ba-Cu-O system at high temperatures[J]. J. J. Appl. Phys, 1989, 28(3A): L399.

[172] Chang H, Ren Y T, Sun Y Y et al. Raman studies on BaCuO2, Ba2CuO3 and Ba2Cu3O5. 9[J]. Physica C, 1994, 228(3-4): 383-388.

[173] Lindemer T B, Hunley J F, Gates J E, et al. Experimental and Thermodynamic Study of Nonstoichiometry in[J]. Journal of the American Ceramic Society, 1989, 72(10): 1775-1788.

[174] Jian H, Zhong H, Liu X et al. Oxygen order control by post-annealing for optimizing critical temperature of YBaCuO coated conductors with silver protective layer[J]. Physica C, 2017, 538: 40-45.

[175] Andersen N H, Von Zimmermann M, Frello T et al. Superstructure formation and the structural phase diagram of YBa2Cu3O6+x[J]. Physica C, 1999, 317: 259-269.

[176] Zimmermann M, Schneider J R, Frello T et al. Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction[J]. Phys. Rev. B, 2003, 68(10): 104515.

[177] LaGraff J R, Payne D A. Chemical diffusion of oxygen in single-crystal and polycrystalline YBa2Cu3O6+x determined by electrical-resistance measurements[J]. Phys. Rev. B, 1993, 47(6): 3380.

[178] Semba K, Matsuda A. Superconductor-to-insulator transition and transport properties of underdoped YBa2Cu3Oy crystals[J]. Phys. Rev. Lett, 2001, 86(3): 496.

[179] Kröger F A. The chemistry of imperfect crystals[R]. North-Holland Pub. Co, 1964.

[180] Marucco J F, Noguera C, Garoche P et al. Thermodynamic study at high temperature of the superconducting system YBa2Cu3Oz with 6

[181] Ossandon J G, Thompson J R, Christen D K et al. Influence of oxygen deficiency on the superconductive properties of grain-aligned YBa2Cu3O7-δ[J]. Phys. Rev. B, 1992, 45(21): 12534.

[182] Feenstra R, Christen D K, Klabunde C E et al. Role of oxygen vacancies in the flux-pinning mechanism, and hole-doping lattice disorder in high-current-density YBa2Cu3O7-x films[J]. Phys. Rev. B, 1992, 45(13): 7555.

[183] Takayama-Muromachi E, Uchida Y, Yukino K et al. Thermogravimetric and High Temperature X-Ray Studies on the Orthorhombic-to-Tetragonal Transition of YBa2Cu3Oy[J]. J. J. Appl. Phys, 1987, 26(5A): L665.

[184] Mwamba K, Verwerft M, Duvigneaud P H. Phase Relationships in the UO2-BaO-ZrO2-MoOx System[C]. Key engineering materials. Trans Tech Publications, 2004, 264: 1051-1054.

[185] LaGraff J R, Payne D A. Chemical diffusion of oxygen in single-crystal and polycrystalline YBa2Cu3O6+x determined by electrical-resistance measurements[J]. Phys. Rev. B, 1993, 47(6): 3380.

[186] Kan A, Ogawa H, Ohsato H. Effects of microstructure on microwave dielectric properties of Y2Ba(Cu1-xZnx)O5 solid solutions[J]. J. Eur. Ceram. Soc, 2001, 21(10-11): 1699-1704.

[187] Maeda T, Yoshimoto M, Shimozono K et al. Two-dimensional laser molecular beam epitaxy and carrier modulation of infinite-layer BaCuO2 films[J]. Physica C, 1995, 247(1-2): 142-146.

[188] Meyer B K, Polity A, Reppin D et al. Binary copper oxide semiconductors: From materials towards devices[J]. Phys. Status. Solidi. B, 2012, 249(8): 1487-1509.

[189] Chen N, Rothman S J, Routbort J L et al. Tracer diffusion of Ba and Y in YBa2Cu3Ox[J]. J. Mater. Res, 1992, 7(9): 2308-2316.

[190] Wu C, Zhao G, Qiao F. Characteristics of YBa2Cu3O7-x/SrTiO3/YBa2Cu3O7-x films formed by chemical solution deposition[J]. Ceram. Int, 2014, 40(8): 13145-13150.

[191] Missert N, Reintsema C D, Beall J A, et al. Growth and characterization of YBCO/insulator/YBCO trilayers[J]. IEEE Trans. Appl. Supercond, 1993, 3(1): 1741-1744.

[192] Miura S, Hattori W, Satoh T et al. Properties of a YBCO/insulator/YBCO trilayer and its application to a multilayer Josephson junction[J]. Supercond. Sci. Technol, 1996, 9(4A): A59.

[193] Liu C, Zhang J, Wang L et al. Molecular dynamics analysis of lattice site dependent oxygen ion diffusion in YBa2Cu3O7-δ: Exposing the origin of anisotropic oxygen diffusivity[J]. Solid State Ionics, 2013, 232: 123-128.

[194] Chaplot S L. Interatomic potential,phonon spectrum and molecular-dynamics simulation up to 1300 K in YBa2Cu3O7-δ[J]. Phys. Rev. B, 1990, 42(4): 2149.

[195] Li Z X, Cao J J, Gou X F et al. Uncovering a new quasi-2D CuO2 plane between the YBa2Cu3O7 and CeO2 buffer layer of coated conductors[J]. Appl. Surf. Sci, 2018, 427: 169-173.

[196] Aselage T, Keefer K. Liquidus relations in Y-Ba-Cu oxides[J]. J. Mater. Res, 1988, 3(6): 1279-1291.

[197] Murakami M, Morita M, Doi K et al. A new process with the promise of high Jc in oxide superconductors[J]. J. J. Appl. Phys, 1989, 28(7R): 1189.

[198] Cima M J, Flemings M C, Figueredo A M et al. Semisolid solidification of high temperature superconducting oxides[J]. J. Appl. Phys, 1992, 72(1): 179-190.

[199] Salama K, Lee D F. Progress in melt texturing of YBa2Cu3Ox superconductor[J]. Supercond. Sci. Technol, 1994, 7(4): 177.

[200] Murakami M, Sakai N, Higuchi T et al. Melt-processed light rare earth element-Ba-Cu-O[J]. Supercond. Sci. Technol, 1996, 9(12): 1015.

[201] Taïr F, Carreras L, Camps J et al. Melting temperature of YBa2Cu3O7-x and GdBa2Cu3O7-x at subatmospheric partial pressure[J]. J. Alloy. Compd, 2017, 692: 787-792.

[202] Lindemer T B, Washburn F A, MacDougall C S, et al. Decomposition of YBa2Cu3O7-x and YBa2Cu4O8 for PO2 ≤ 0.1 MPa[J]. Physica C, 1991, 178(1-3): 93-104.

[203] Ye J, Nakamura K. Systematic study of the growth-temperature dependence of structural disorder and superconductivity in YBa2Cu3O7-δ thin films[J]. Phys. Rev. B, 1994, 50(10): 7099.

[204] MacManus-Driscoll J L, Alonso J A, Wang P C et al. Studies of structural disorder in REBa2Cu3O7-x thin films (RE= rare earth) as a function of rare-earth ionic radius and film deposition conditions[J]. Physica C, 1994, 232(3-4): 288-308.

[205] Degoy S, Jimenez J, Martin P et al. Oxygen content of YBaCuO thin films[J]. Physica C, 1996, 256(3-4): 291-297.

[206] Kim J S, Gaskell D R. Stability Diagram for the system YBa2Cu3O7-x[J]. J. Am. Ceram. Soc, 1994, 77(3): 753-758.

[207] Cava R J, Hewat A W, Hewat E A et al. Structural anomalies, oxygen ordering and superconductivity in oxygen deficient YBa2Cu3Ox[J]. Physica C, 1990, 165(5-6): 419-433.

[208] Jang W J, Mori H, Watahiki M et al. Change in Crystal Structure and Electron Density by Introducing Oxygen in YBa2Cu3Oy Singal Crystal[J]. J. Solid. State. Chem, 1997, 130(1): 42-47.

[209] Qi X, MacManus-Driscoll J L. Liquid phase epitaxy processing for high temperature superconductor tapes[J]. Curr. Opin. Solid. St. M, 2001, 5(4): 291-300.

[210] Feenstra R, Lindemer T B, Budai J D et al. Effect of oxygen pressure on the synthesis of YBa2Cu3O7-x thin films by post‐deposition annealing[J]. J. Appl. Phys, 1991, 69(9): 6569-6585.

[211] Scheel H J, Klemenz C, Reinhart F K et al. Monosteps on extremely flat YBa2Cu3O7-x surfaces grown by liquid‐phase epitaxy[J]. Appl. Phys. Lett, 1994, 65(7): 901-903.

[212] Cai Y Q, Yao X, Lai Y J. Mechanism of transition between a-axis and c-axis growth of YBa2Cu3Ox thick films grown on NdGaO3 substrate[J]. J. Appl. Phys, 2006, 99(11): 113909.

[213] Aichele T, Bornmann S, Dubs C et al. Liquid Phase Epitaxy (LPE) of YB2Cu3O7‐δ High Tc Superconductors[J]. Cryst. Res. Technol, 1997, 32(8): 1145-1154.

[214] Kitamura T, Yoshida M, Yamada Y et al. Crystalline orientation of YBa2Cu3Oy film prepared by liquid‐phase epitaxial growth on NdGaO3 substrate[J]. Appl. Phys. Lett, 1995, 66(11): 1421-1423.

[215] Solovyov V F, Wiesmann H J, Suenaga M. Nucleation of YBa2Cu3O7-x on buffered metallic substrates in thick precursor films made by the BaF2 process[J]. Supercond. Sci. Technol, 2004, 18(3): 239.

[216] Solovyov V F, Wiesmann H J, Li Q et al. Three and four-μm-thick YBa2Cu3O7 layers with high critical-current densities on flexible metallic substrates by the BaF2 process[J]. J. Appl. Phys, 2006, 99(1): 013902.

[217] Yao X, Shiohara Y. Large REBCO single crystals : growth processes and superconducting properties[J]. Supercond. Sci. Technol, 1997, 10(5): 249.

[218] Endo T, Yoshii K, Iwasaki S et al. Oxygen partial pressure dependences of a-c phase ratio, crystallinity, surface roughness and in-plane orientation in YBCO thin film depositions by IBS[J]. Supercond. Sci. Technol, 2002, 16(1): 110.

[219] Cai Y Q, Tang C Y, Sun L J et al. Dominant Effect of Oxygen Enhancement on the Crystalline Orientation of YBa2Cu3Ox Film Prepared by Liquid-Phase Epitaxial Growth[J]. Cryst. Growth Des, 2007, 7(8): 1469-1471.

[220] Tang C Y, Chen Y Y, Li W et al. Supersaturation-Controlled Growth Orientation and Grain Boundary Transition in REBa2Cu3O7-δ(RE=Sm,Sm1-xYx) Liquid-Phase Epitaxial Films[J]. Cryst. Growth Des, 2010, 10(2): 575-579.

[221] Tang C Y, Cai Y Q, Li W et al. Crystallographic Axis Transition of Sm1+xBa2-xCu3O7-δ Film Prepared by Liquid Phase Epitaxy (LPE)[J], Cryst. Growth Des, 2009, 9(3):1339-1343.

[222] Wang W T, Pu M H, Wang W W et al. High performance GdBa2Cu3O7-z film preparation by non-fluorine chemical solution deposition approach[J], Physica C, 2011, 471(21-22): 951-955.

[223] Yang X, Wang W T, Liu L et al. Rapid Pyrolysis of YBa2Cu3O7-δ Films by Fluorine-Free Polymer-Assisted Chemical Solution Deposition Approach[J]. J. Supercond. Nov. Magn, 2019: 1-7.

馆藏位置:

 TM26+2 B 2019    

开放日期:

 2020-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式