- 无标题文档
查看论文信息

中文题名:

 扩大头锚索承载机理及在深大基坑中的模拟方法研究    

姓名:

 余云翔    

一卡通号:

 0000357521    

论文语种:

 中文    

学科名称:

 工学 - 土木工程 - 桥梁与隧道工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 土木工程学院    

专业:

 桥梁与隧道工程    

第一导师姓名:

 马龙祥    

第一导师单位:

 西南交通大学    

完成日期:

 2022-05-12    

答辩日期:

 2022-05-19    

外文题名:

 Research on the Bearing Mechanism of Expended Anchor Cable and its Simulation Method in Numerical Analysis of Deep Foundation Pit    

中文关键词:

 扩大头锚索 ; 承载机理 ; 极限抗拔力 ; 上限分析 ; 数值模拟    

外文关键词:

 expanded anchor cable ; bearing mechanism ; uplift force ; upper bound analysis ; numerical simulation    

中文摘要:

在软弱地层且不具备其他支护手段实施条件的基坑工程中,由于地层的物理力学性质差,传统锚索往往不能提供足够的抗拔承载力。为了保证施工及结构的安全,应用扩大头锚索将是一种优良、可选的施工方案。但扩大头锚索的研发及应用起步相对较晚,且其承载机理复杂,目前对于其承载机理及极限承载能力的认识不够深入,大多数工程设计依然依赖于既有工程经验,往往出现预期极限承载能力与实测值差别巨大的问题,给工程安全带来了不确定因素,甚至诱发相关安全事故;同时,目前关于基坑工程的仿真方法还不能方便地对扩大头锚索端阻力加以考虑,从而也给基坑的变形及稳定性评价带来了较大不利影响。在此背景下,本文采用数值模拟、理论分析及现场监测数据分析相结合的方法,对扩大头锚索承载机理及其在深大基坑中的模拟方法开展了较为系统的研究。论文的主要工作和研究成果如下:(1)应用数值模拟的方法,对倾斜布置下扩大头锚索的承载性能以及周围地层的响应规律进行了研究,探明了扩大头锚索侧阻力及端阻力随拉拔力的变化关系。(2)基于极限分析上限定理,构造了扩大头锚索在自由塑流阶段的两种机构破坏模式,分析了相应破坏模式下破坏土体区域的外力做功率和内部能量耗散率,进而基于虚功率原理推导了相应破坏模式下扩大头锚索极限抗拔承载力的上限解。在此基础上,通过侧阻力、端阻力及极限抗拔力理论解与相应数值解的对比,验证了上限解的正确性,并确定了更优的破坏模式。(3)基于扩大头锚索极限抗拔力的上限解,研究了扩孔直径、锚固段长度、自由段长度、杆体倾角以及埋深对扩大头锚索端阻力、侧阻力及极限抗拔承载力的影响,发现扩孔直径、锚固段长度、自由段长度以及埋深对扩大头锚索的极限抗拔承载力均有重要影响。(4)针对FLAC3D有限差分软件中锚索(cable)单元无法考虑扩大头锚索端阻力的缺陷,提出了一种可同时考虑扩大头锚索侧阻力及端阻力的数值迭代方法,而后通过该方法的数值模拟结果与未考虑端阻力的数值模拟结果以及现场实测数据的对比分析,验证了所提方法的正确性。

外文摘要:

In the foundation pit engineering with weak stratum and without other supporting means, due to the poor physical and mechanical properties of the strata, the traditional anchor cable cannot often provide sufficient uplift bearing capacity. To ensure the safety of construction and structure, the application of extended anchor cable will be an excellent and optional construction scheme. However, the research and application of the expanded anchor cable started relatively late, and its bearing mechanism is complex. At present, the understanding of its bearing mechanism and ultimate bearing capacity is not deep enough. Most engineering design still relies on existing engineering experience, and often there is a huge difference between the expected ultimate bearing capacity and the measured value, which brings uncertain factors to engineering safety and even induces related safety accidents. At the same time, the current simulation method for foundation pit engineering cannot easily consider the end resistance of the extended anchor cable, which also brings great adverse effects on the deformation and stability evaluation of the foundation pit. In this context, this paper adopts the method of combining numerical simulation, theoretical analysis, and field monitoring data analysis to systematically study the bearing mechanism of extended anchor cable and its simulation method in a deep foundation pit. The main work and research results of this paper are as follows:(1) Application of numerical simulation method, the bearing capacity and the response law of surrounding strata of the expanded anchor cable with an inclined arrangement under different drawing forces are studied, and then the relationship between the side resistance, earth pressure before the expanded end and bearing ratio of the expanded anchor cable and the drawing force is proved.(2) Based on the upper bound theorem of limit analysis, two failure modes of the mechanism of the extended anchor cable in the free plastic flow stage generated by the ultimate drawing are constructed. The external force power and internal energy dissipation rate of the damaged soil area under the corresponding failure mode are analyzed. Based on the virtual power principle, the upper bound solution of the ultimate uplift bearing capacity of the extended anchor cable under the corresponding failure mode is derived. On this basis, the correctness of the upper bound solution is verified and the better failure mode is determined by comparing the theoretical solutions of side resistance, earth pressure before the expanded end, and ultimate uplift force with the corresponding numerical solutions.(3) Based on the upper bound solution of the ultimate uplift force of the expanded anchor cable, the effects of the diameter of the hole, the length of the anchorage section, the length of the free section, the inclination angle of the rod and the buried depth on the end resistance, lateral resistance and ultimate uplift bearing capacity of the expanded anchor cable are studied. It is found that the diameter of the hole, the length of the anchorage section, the length of the free section, and the buried depth have important effects on the ultimate uplift bearing capacity of the expanded anchor cable.(4) In view of the defect that the cable element in FLAC3D finite difference software cannot consider the end resistance of the extended anchor cable, a numerical iteration method that can consider both the side resistance and the earth pressure of the expanded cable is proposed. Then, the correctness of the proposed method is verified by comparing the numerical simulation results of this method with the numerical simulation results without considering the earth pressure before the expanded end and the field measured data.

分类号:

 TU473    

总页码:

 117    

参考文献总数:

 99    

参考文献:

[1] 钱七虎,陈晓强. 充分开发利用地下空间建设资源节约型和环境友好型城市[C].钱七虎院士论文选集,2007:715-721.

[2] 李浩,宋园园,周军,李健,申振华.深基坑桩锚支护结构受力与变形特性现场试验[J].地下空间与工程学报,2017,13(01):264-270.

[3] 胡贺松. 深基坑桩锚支护结构稳定性及受力变形特性研究[D].中南大学,2009.

[4] 管涛,孙世国,江俊,李彭伟.北京某小区复杂环境下深基坑支护技术及变形研究[J].建筑结构,2021,51(S2):1509-1513.

[5] 徐勇,杨挺,王心联.桩锚支护体系在大型深基坑工程中的应用[J].地下空间与工程学报,2006(04):646-649+665.

[6] 翟金明,周丰峻,刘玉堂.扩大头锚杆在软土地区锚固工程中的应用与发展[C]. 锚固与注浆新技术——第二届全国岩石锚固与注浆学术会议论文集. 2002.

[7] 程良奎等著.岩土锚固[M].中国建筑工业出版社,2003.

[8] 林振湖,何国金.土层扩大头锚杆挡土墙[J].建筑结构学报,1980(04):65.

[9] 梁月英. 土层扩孔压力型锚杆的锚固机理研究[D].中国铁道科学研究院,2012.

[10] 程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报,2005(21):5-13.

[11] 李克金.可回收预应力锚索在深基坑工程中的应用技术研究[J].铁道建筑技术,2015(05):99-102+110.

[12] 赵启嘉,刘正根.可回收锚索在基坑支护工程中的技术研究及应用探讨[J].岩土工程学报,2012,34(S1):480-483.

[13] 刘卫铎.可回收锚索工艺在城市地铁施工中的应用[J].铁道工程学报,2011,28(03):105-108+114.

[14] 孙凯,孙玥.土体中扩大头压力型预应力锚索研究及工程应用[J].预应力技术,2008(4):27-31.

[15] 朱振华,张俊利,杨春发.预应力扩大头锚索在深基坑支护工程中的应用[J].湖南城市学院学报:自然科学版,2011,20(4):17-19.

[16] 王晓曙,王自忠,杨世相,郑云刚.新型囊式扩体锚索在基坑支护工程中的应用[J].施工技术,2013,42(19):26-29.

[17] 石楚琪,戚玉亮,谢丁,赵倩.软土地层高压旋喷扩大头锚索施工技术[J].建筑科学,2020,36(S1):125-129.

[18] 大吨位可回收式旋喷扩大头锚索在软土地区的应用[J].建筑施工,2020,42(12):2207-2209.

[19] Farmer I W . Stress distribution along a resin grouted rock anchor[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1975, 12(11):347-351.

[20] Jiang Z X . A Gauss curve model on shear stress along anchoring section of anchoring rope of extensional force type[J]. Chinese Journal of Geotechnical Engineering, 2001(06):696-699.

[21] Zhang J R, Tang BF. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002(02):188-192.

[22] 尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.

[23] Li C , Stillborg B . Analytical model for rock bolts[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8):1013-1029.

[24] Chen G, Jia J. ANALYTICAL SOLUTION FOR COMPRESSION ANCHOR UNDER PULL LOAD[C]. New Frontiers in Chinese and Japanese Geotechniques. Structural Engineering Institute, Department of Civil Engineering, Dalian University of Technology, Dalian, 116024, China; Structural Engineering Institute, Department of Civil Engineering, Dalian University of Technology, Dalian, 116024, China, 2007.

[25] 陈国周, 贾金青. 锚杆与土体界面渐进破坏的解析解[J]. 岩土力学, 2007(S1):7.

[26] Jian-Jun Zheng, Jian-Guo Dai. Analytical solution for the full-range pull-out behavior of FRP ground anchors[J]. Construction and Building Materials,2014,58.

[27] Hai-Chun Ma,Xiao-Hui Tan,Jia-Zhong Qian,Xiao-Liang Hou. Theoretical analysis of anchorage mechanism for rock bolt including local stripping bolt[J]. International Journal of Rock Mechanics and Mining Sciences,2019,122(C).

[28] 卢黎,张永兴,吴曙光.压力型锚杆锚固段的应力分布规律研究[J].岩土力学,2008,29(6):1517-1520.

[29] 崔千里,康红普.锚杆支护锚固力传递机理研究[J].煤矿开采,2010,15(2):56-58+99.

[30] 李术才,王洪涛,王琦,王德超,江贝,杨为民,张红军,李为腾.Hoek-Brown准则下预应力锚索锚固体破坏的极限分析[J].岩土力学,2014,35(02):466-473+489.

[31] Zhao L H , Yang X P , F Huang, et al. Variational analysis of the ultimate pullout capacity of shallow circular anchor plates in rock foundations based on the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106:190-197.

[32] 尤春安,战玉宝.预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报,2005(06):925-928.

[33] 蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001(06):696-699.

[34] A Kılıc, E Yasar, A.G Celik. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2002,17(4).

[35] 张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002(02):188-192.

[36] Makoto Obata, Michio Inoue, Yoshiaki Goto. The failure mechanism and the pull-out strength of a bond-type anchor near a free edge[J]. Mechanics of Materials,1998,28(1).

[37] Serrano A, Olalla C. Tensile resistance of rock anchors[J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(4):449-474.

[38] 何思明,王成华.预应力锚索破坏特性及极限抗拔力研究[J].岩石力学与工程学报,2004(17):2966-2971.

[39] 邹金锋,李亮,杨小礼,邓宗伟.基于非线性Mohr-Coulomb强度准则下锚索极限抗拔力研究[J].岩土工程学报,2007(01):107-111.

[40] 曾庆义,杨晓阳,杨昌亚.扩大头锚杆的力学机制和计算方法[J].岩土力学,2010,31(05):1359-1367.

[41] JGJ/T 282-2012, 高压喷射扩大头锚杆技术规程[S].

[42] 江建洪,曾庆义,马健.考虑倾角影响的扩大头锚杆极限抗拔力[J].哈尔滨工业大学学报,2022,54(02):154-161.

[43] 刘波,张功,杨伟红,任鑫,宋常军.扩大头锚索在饱和粉细砂层中的受力特性[J].地下空间与工程学报,2016,12(02):412-419.

[44] 梁月英. 土层扩孔压力型锚杆的锚固机理研究[D].中国铁道科学研究院,2012.

[45] 林观茂,张丽娟,温忠义.深基坑扩大头锚杆支护体系数值模拟[J].路基工程,2015,(05):92-98+111.

[46] 杨芮,习志锐,潘少华.深基坑支护方案优化及其应力应变分析[J].水电能源科学,2013,31(12):143-146.

[47] 杨卓. 囊压式扩体锚杆锚固机理与承载特性试验研究[D].中国矿业大学(北京),2016.

[48] 王哲,王乔坎,马少俊,薛毅,许四法.扩大头可回收预应力锚索极限抗拔力计算方法研究[J].岩土力学,2018,39(S2):202-208.

[49] S. Frydman I S . Pullout capacity of slab anchors in sand[J]. Canadian Geotechnical Journal, 1989, 26(3):385-400.

[50] Hanna A , Foriero A , Ayadat T . Pullout Capacity of Inclined Shallow Single Anchor Plate in Sand[J]. Indian Geotechnical Journal, 2015, 45(1):110-120.

[51] Bhattacharya P , Kumar J . Pullout capacity of inclined plate anchors embedded in sand[J]. Canadian Geotechnical Journal, 2014, 51(11):1365-1370.

[52] S.B. Yu, J.P. Hambleton, Scott William Sloan. Analysis of Inclined Strip Anchors in Sand Based on the Block Set Mechanism[J]. Applied Mechanics and Materials,2014,3118(553-553).

[53] Heuze F.E.. Anchoring in rock and soil L. Hobst and J. Zajíc. Elsevier, Amsterdam, 1983, 2nd ed., xiv + 570 pp., US $100.00 (hardcover)[J]. Engineering Geology,1983,19(4).

[54] Geotechnical engineering handbook[J]. Scitech Book News,2010,34(4).

[55] Barley A D. The single bore multiple anchor system. 1997.

[56] A. D. Barley,D. Hossain,H. J. Liao,S. T. Hsu. Should Grouted Anchors Have Short Tendon Bond Length[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(9).

[57] Jean-Louis Briaud. Should Grouted Anchors Have Short Tendon Bond Length[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(2).

[58] Bradley Forbes,Nicholas Vlachopoulos,Mark S. Diederichs,Jonathan Aubertin. Augmenting the in-situ rock bolt pull test with distributed optical fiber strain sensing[J]. International Journal of Rock Mechanics and Mining Sciences,2020,126(C).

[59] Gang Guo,Zhong Liu,Aiping Tang,Yibing Deng,Jiqiang Zhang,Roman Wan-Wendner. Model Test Research on Bearing Mechanism of Underreamed Ground Anchor in Sand[J]. Mathematical Problems in Engineering,2018,2018.

[60] S T Hsu,H J Liao. Uplift behaviour of cylindrical anchors in sand[J]. Canadian Geotechnical Journal,1998,35(1).

[61] 魏支援,王勇,龚晓南,郭盼盼.富水砂加卵石双地层锚索现场试验及数值模拟[J].地下空间与工程学报,2021,17(05):1507-1516.

[62] 王小勇,王勇华,张继文.黄土层中深基坑预应力锚索试验研究[J].岩土工程技术,2019,33(02):121-125.

[63] 刘永权,刘新荣,杨忠平,康景文.不同类型预应力锚索锚固性能现场试验对比研究[J].岩石力学与工程学报,2016,35(02):275-283.

[64] 于远祥,谷拴成,吴璋,王毅.黄土地层下预应力锚索荷载传递规律的试验研究[J].岩石力学与工程学报,2010,29(12):2573-2580.

[65] 张敬一,蒋志军.承压扩体锚杆承载-变形特性现场试验[J].地下空间与工程学报,2018,14(S2):554-558.

[66] Hai-Chun Ma,Xiao-Hui Tan,Jia-Zhong Qian,Xiao-Liang Hou. Theoretical analysis of anchorage mechanism for rock bolt including local stripping bolt[J]. International Journal of Rock Mechanics and Mining Sciences,2019,122(C).

[67] 夏元友,陈泽松,顾金才,张亮亮,郑筱彦.压力分散型锚索受力特点的室内足尺模型试验[J].武汉理工大学学报,2010,32(03):33-37.

[68] 张慧乐,刘钟,赵琰飞,柳建国.拉力型扩体锚杆抗拔模型试验研究[J].工业建筑,2011,41(02):49-52.

[69] 郭钢,刘钟,邓益兵,杨松,马利军.砂土中扩体锚杆承载特性模型试验研究[J].岩土力学,2012,33(12):3645-3652.

[70] 刘剑平,张慧乐,王述红,张慧东,赵琰飞.扩体锚杆承载特性的模型试验研究[J].地下空间与工程学报,2013,9(04):749-757.

[71] 刘钟,郭钢,王保军,卢璟春,张义.扩体锚杆破坏类型模型试验研究[J].岩土锚固工程,2012(4):40-44

[72] 王强,刘海笑,李洲.基于边界面模型的砂土中板锚循环承载力数值分析[J].海洋工程,2021,39(03):83-94.

[73] T. Matthew Evans,Nan Zhang. Three-Dimensional Simulations of Plate Anchor Pullout in Granular Materials[J]. International Journal of Geomechanics,2019,19(4).

[74] Na C A, Hwa B, Mjb C. DEM investigation of rock/bolt mechanical behaviour in pull-out tests[J]. Particuology, 2020, 52:10-27.

[75] Yang, Shuai,Zhu, Xunguo,Zhang, Guofeng,Yang, Lin,Xia, Hongchun,Li, Wei. Research on the Mechanics Performance of the New Tension–Compression Rock Bolt Through Numerical Simulation[J]. Geotechnical and Geological Engineering,2021(prepublish):

[76] 刘鸿,冯君.压力分散型锚索锚固机理数值分析研究[J].地下空间与工程学报,2015,11(02):446-455.

[77] 丁秀丽,盛谦,韩军,程良奎,白世伟.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报,2002(07):980-988.

[78] 王金华,康红普,高富强.锚索支护传力机制与应力分布的数值模拟[J].煤炭学报,2008(01):1-6.

[79] 文鹏宇. 扩大头抗拔锚杆承载特性试验研究[D].郑州大学,2016.

[80] 曹帅. 旋喷扩大头锚索在帝一广场基坑项目中的应用研究[D].西南科技大学,2018.

[81] 郭钢. 扩体锚杆承载机理与极限承载力研究[D].哈尔滨工业大学,2019.

[82] 陈育民,徐鼎平编著.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社,2013.

[83] Drucker D C, Prager W, Greenberg H J. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics, 1952, 9(4):381-389.

[84] Chen W.F. Limit analysis and soil plasticity[M]. Elsevier Scientific Publishing Company. 1975.

[85] 付江山. 圆形浅基础地基承载力极限分析与数值模拟[D].中南大学,2010.

[86] Xiao-Li Yang,Dian-Chun Du. Upper bound analysis for bearing capacity of nonhomogeneous and anisotropic clay foundation[J]. KSCE journal of civil engineering,2016,20(7).

[87] Yodsomjai Wittawat, Keawsawasvong Suraparb, Lai Van Qui. Correction to: Limit Analysis Solutions for Bearing Capacity of Ring Foundations on Rocks Using Hoek–Brown Failure Criterion[J]. International Journal of Geosynthetics and Ground Engineering,2021,7(2).

[88] Abdul-Hamid Soubra. Upper-Bound Solutions for Bearing Capacity of Foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1).

[89] 殷建华,陈健,李焯芬.岩土边坡稳定性的刚体有限元上限分析法[J].岩石力学与工程学报,2004(06):898-905.

[90] Wulandari S N,Li A J,Wahyudi H. Effects of pore water pressure on cohesive-frictional slope stability by limit analysis[J]. IOP Conference Series: Earth and Environmental Science,2019,351.

[91] Chwała Marcin. Upper-bound approach based on failure mechanisms in slope stability analysis of spatially variable [formula omitted]-[formula omitted] soils[J]. Computers and Geotechnics,2021,135.

[92] Guilhem Mollon,Daniel Dias,Abdul-Hamid Soubra. Probabilistic Analysis and Design of Circular Tunnels against Face Stability[J]. International Journal of Geomechanics,2009,9(6).

[93] Guilhem Mollon, Daniel Dias, Abdul‐Hamid Soubra. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(12).

[94] 代仲海,胡再强.复合地层盾构开挖面极限支护力上限分析[J].工程科学与技术,2021,53(02):95-102.

[95] Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of ICNN'95 - International Conference on Neural Networks. IEEE, 1995.

[96] 郭文忠.离散粒子群优化算法及其应用[M].清华大学出版社,2012.

[97] 杜文,宁三子,金罡,孟晓伟,马龙祥,余云翔.广州淤泥质地层深大基坑开挖中的地层变形特征[J].建筑施工,2021,43(03).

[98] JGJ 120-2012, 建筑基坑支护技术规程[S].

[99] GB50497-2019, 建筑基坑工程监测技术规范[S]. 

馆藏位置:

 TU473 S 2022    

开放日期:

 2022-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式