中文题名: | 基于深度网络结构的情感分析方法研究 |
姓名: | |
一卡通号: | 0000310168 |
论文语种: | 中文 |
学科名称: | |
公开时间: | 公开 |
学生类型: | 博士 |
学位: | 工学博士 |
学校: | 西南交通大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师单位: | 西南交通大学 |
完成日期: | 2021-10-15 |
答辩日期: | 2021-12-31 |
外文题名: | THE RESEARCH OF SENTIMENT ANALYSIS BASED ON DEEP NETWORK STRUCTURE |
中文关键词: | |
外文关键词: | |
中文摘要: |
随着电子商务、线上餐饮和社交媒体等互联网信息技术的迅猛发展,越来越多的用户倾向于在线上发表自己对商品、服务、问题和事件等观点和态度。通过挖掘这些用户输出的文本、图片、视频和音频等信息,可以为个人行为决策提供支撑、帮助企业和商家进行改进产品和提升服务和辅助政府进行舆情的分析和引导。情感分析,又叫观点挖掘,是一个挖掘用户意图和情感倾向的研究方向。大致从二十世纪九十年代开始,越来越多的研究者投身到这个方向的研究工作上。经过二三十年的发展,情感分析已经成为数据挖掘、机器学习和人工智能等研究领域的热点方向之一。研究内容涵盖文本的文档级、句子级、词语级等多种粒度以及图片、视频和音频等多个模态的信息。本文主要对情感分析中的抽取和分类任务进行模型研究,包括基于方面词的细粒度情感分析和多模态情感分析两个场景。具体的研究任务包含方面词抽取、方面词-极性对协同抽取和多模态情感分类。主要的研究工作和研究成果总结如下: |
外文摘要: |
With the rapid development of Internet information technologies, such as e-commerce, online catering, and social media, more and more users express their views and attitudes on goods, services, problems, and events online. Mining the information of texts, pictures, videos, audios, etc., generated by users, can impact individual behavior decisions, help enterprises and businesses to improve products and services, and assist the government to analyze and guide public feelings. Sentiment analysis, also known as opinion mining, is a research direction to discover users' intentions and emotional tendencies. Since the 1990s, more and more researchers have devoted themselves to this research direction. After two or three decades of development, sentiment analysis has become one of the hot topics in data mining, machine learning, and artificial intelligence. The research content contains different granularities, including document, sentence, and word, and multiple modalities, including pictures, videos, and audios besides texts. This dissertation mainly studies extraction and classification tasks in sentiment analysis, including aspect-based sentiment analysis and multimodal sentiment analysis. Especially, the research tasks include aspect term extraction, aspect term-polarity co-extraction, and multimodal sentiment analysis. The main research work and results are summarized as follows: |
分类号: | TP183 |
总页码: | 114 |
参考文献总数: | 210 |
馆藏位置: | TP183 B 2021 |
开放日期: | 2022-06-09 |