- 无标题文档
查看论文信息

中文题名:

 纳米颗粒增强铜基复合材料工艺及性能的研究    

姓名:

 周加敏    

学号:

 0000207388    

论文语种:

 中文    

学科名称:

 材料学    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

第一导师姓名:

 朱德贵    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-01    

答辩日期:

 2017-05-14    

外文题名:

 Research on Preparation and Microstructure Properties of Nano-particles Reinforced Copper Matrix Composites    

中文关键词:

 Cu-Cr-Zr 合金 ; Cu-SiC 复合材料 ; 电沉积 ; 机械性能 ; 组织结构    

外文关键词:

 Cu-Cr-Zr alloy ; Cu-SiC composite ; electrodeposition ; mechanical properties ; microstructure    

中文摘要:

铜基复合材料兼顾良好的导电率和高的强度,广泛的被应用到航天航空、交通、微电子等领域,是一种具有良好发展前景的复合材料。随着我国铜基复合材料的服役性能的不断提高,探索新的制备方法,制备出满足高性能的铜基复合材料就十分的有必要。本文主要是利用热压烧结制备 Cu-Cr-Zr 合金,探讨不同的热处理工艺对合金组织和性能的影响;同时利用电沉积技术+热等静压技术制备出致密的 Cu-SiC 复合材料,研究电镀液中 SiC 颗粒的含量对复合材料的微观组织和性能的影响。
对于 Cu-Cr-Zr 合金,通过改变固溶和时效的温度以及时间来研究合金的相关性能,可以得到:由于溶解度和晶粒尺寸的共同作用,Cu-Cr-Zr 合金的硬度随着固溶温度的上升先保持上升而后有着略微的下降,而由于时效过程中沉淀相不断的析出,硬度随着时效的时间的延长先上升,达到最大值后,沉淀相将聚集长大,材料的硬度有所下降,出现过时效的现象。当 Cu-Cr-Zr 合金 960℃固溶 1h+450℃时效 4h 时合金的硬度达到最大值 141Hv。Cu-Cr-Zr 的导电率随着时效时间的延长一直保持上升趋势,最后维持稳定。对 960℃固溶 1h+450℃时效 4h 的合金进行 TEM 分析,发现沉淀相主要是弥散分布的 Cr 相和 Cu 5 Zr 相,由于沉淀相的强化作用,合金的拉伸强度得到大幅度的提高为 397 MPa,但是 Cr 的强化效果要明显的由于富 Zr 相。观察拉伸试样的拉伸断口,发现端口表面存在大量的韧窝,合金展现出良好的塑性。根据马西森定律。
  对于 Cu-SiC 复合材料,利用电沉积技术+热等静压的方法制备出完全致密的复合材料,探讨电镀液中 SiC 颗粒的含量对 Cu-SiC 复合材料微观组织性能的影响,结果表明:电镀液中 SiC 颗粒含量升高,沉积的 SiC 越多,当 SiC 颗粒含量达到一定值时,沉积在复合材料中的 SiC 含量并未增加。由于沉积的 SiC 钉扎基体晶界,使得铜基体的晶粒尺寸减小。通过 SEM 和 TEM 分析表明沉积的 SiC 存在两种不同的尺寸,一种是由于 SiC 团聚形成的亚微米级颗粒团,主要富集在晶界;另一种是弥散分布的纳米级 SiC 颗粒。而且 SiC 与基体之间的界面平滑,没有界面反应发生。硬度测试表明:随着沉积的 SiC 越多,Cu-SiC 复合材料的硬度越大,当电镀液中 SiC 颗粒含量为 6g/L时,沉积的 SiC 颗粒含量最多为 3.0 vol%,晶粒尺寸最小约为 15 um 左右,但硬度达到最大值 72.7Hv。对 Cu-SiC 复合材料进行摩擦磨损实验发现,随着沉积的 SiC 含量的增加,Cu-SiC 复合材料的磨损量减少,由于 SiC 颗粒硬度大,使得摩擦小球发生变形,复合材料的二维磨痕的宽度将变宽,对其磨损表面分析,发现磨损方式主要是粘着磨损和氧化磨损为主。
 

外文摘要:

Owing to the combination of high strength and high conductivity, copper matrix composite, showing better prospects, is expected to be applied in various fieles, such as space industry, railway contact wires, micro-electronic and so on. With the increase of service requirement, it is necessy to explore the new fabricating method to obtain copper matrix composites with better properties. In this paper, the Cu-Cr-Zr alloy was prepared by hot pressing, the effects of different heat treatments on the microstructure and properties were researched. At the same time, the full dense Cu-SiC composite was prepared by electro-deposition and hot isostatic pressing, the effects of content of SiC particles in electroplate liquid on the structure and properties of Cu-SiC composite was studied.
For Cu-Cr-Zr alloy, the relationship between time, temperature of solution and aging on structure, properties of the alloy was studied. It can be easily found: The hardness of Cu-Cr-Zr alloy increased with increase of soluted temperature firstly, then decreased because of the combined action of grain size and solubility. Owing to the precipitation strengthening, with the prolongation of aging time, the hardness increased firstly, after reaching the peak hardness, the growth of the precipitates caused the decrease of hardness, leading to the overaging. The hardness of Cu-Cr-Zr alloy soluted at 960 o C for 1 h then aged at 450 o C for 4h was highest, about 141Hv. The conductivity of the Cu-Cr-Zr alloy increased rapidly with the prolongation of aging time and then maintained stable. The Cu-Cr-Zr alloy soluted at 960oC for 1 h then aged at 450oC for 4 h was analysed by TEM, it can be found that the precipitates were Cr phase and Cu 5 Zr phase. The increase of strength was caused by the existence of precipitates, the tensile strength of the Cu-Cr-Zr alloy aged at 450 o C for 4 h increased widely, was about 397 MPa. Also it was determined that the effect of Cr particles on strength was more important than that of Cu5Zr particles. A large number of rounded dimples ,which are indicators of cavities formed through precipitates/Cu decohesion and perhaps debonding at the prior inter-particle boundaries , can be found on the fracturesurface of tensile tested specimens, showing excellent plasticity. According to the Matthissen– Fuliminge rule, the function between time and volume fraction of precipitates can be
founded. 
For the Cu-SiC composites, the composite was prepared by electrodeposition and hot isostatic pressing. The effects of content of SiC particles in electroplate liquid on the structure and properties of Cu-SiC composite were studied. It can be found: as the content of SiC particles increased, the nanoparticles in composites continued to increase untile reaching a maxium, at the same time, owing to SiC particles in the matrix pinning the crystal boundary, the grain size of the Cu matrix decreased. Two sizes of SiC in composite can be found using TEM and SEM, one is the sub-micron SiC particles caused by assembly and growth of SiC, which was found on grain boundary of the matrix, the other is the nano-size SiC particles. Also the boundary between Cu and the second phase is smooth, no interfacial reaction can be found. The more SiC particles in composites, the higher hardness of composites is. As the content of SiC particles in electroplate liquid is 6g/L, the content of SiC particles in composites were maximum, about 3.0 vol%, the grain size of Cu matrix is smallest, about 15um, and the hardness is highest, about 72.7Hv. According to friction experiment, with the increase of SiC particles in composites, the weight loss of Cu-SiC composite decreased. Owing to the high hardness of SiC, the friction pair was deformable,the width of grindingcrack became large. It can be found that the wear mode was adhesive wear and oxidative wear on the worn surface.

分类号:

 TB333    

总页码:

 75    

参考文献总数:

 94    

参考文献:

参考文献

[1] 刘彦强,樊建中,桑吉梅,等. 粉末冶金法制备金属基复合材料的研究及应用[J]. 材料导报. 2010, 24(23): 18-23.

[2] 陈博. 复合材料发展现状要略[J]. 高科技纤维与应用. 2012, 37(6): 53-56.

[3] 欧阳柳章,罗承萍,隋贤栋,等. 复合材料应用及其进展[J]. 汽车工艺与材料. 2000(02): 28-31.

[4] 赵欣,朱健健,李梦,等. 复合材料应用研究与产业发展建议[J]. 材料导报. 2016(S1): 525-530.

[5] 郝斌,段先进,崔华,等. 金属基复合材料的发展现状及展望[J]. 材料导报. 2005, 19(7): 64-68.

[6] 王倩,高建国,马伟明. 金属基复合材料的发展与应用[J]. 沈阳大学学报. 2007, 19(2): 10-15.

[7] 王燕,朱晓林,朱宇宏,等. 金属基复合材料概述[J]. 中国标准化. 2013(5): 33-37, 47.

[8] 吴云书. 金属基复合材料的现状与展望[Z]. 北京: 198635页.

[9] 张发云,闫洪,周天瑞,等. 金属基复合材料制备工艺的研究进展[J]. 锻压技术. 2006, 31(6): 100-105.

[10] 郝保红,向兰,方克明. 氧化铝晶须增强铝基复合材料的应用前景[J]. 新技术新工艺. 2006(06): 42-45.

[11] 武高辉,姜龙涛,陈国钦,等. 金属基复合材料界面反应控制研究进展[J]. 中国材料进展. 2012, 31(7): 51-58.

[12] 田园,靳玉春,赵宇宏,等. SiC增强镁基复合材料的研究与应用[J]. 热加工工艺. 2014(22): 22-25.

[13] 邓高生,杨瑞宾,刘忠侠. 短碳纤维增强2024铝基复合材料微屈服行为研究[J]. 特种铸造及有色合金. 2016(6): 637-640.

[14] 刘玫潭,蔡旭升,李国强. 高性能SiC增强Al基复合材料的显微组织和热性能[J]. 中国有色金属学报. 2013(04): 1040-1046.

[15] 张小农,李超,李小璀,等. 原位自生成TiC/Ti基复合材料的高温氧化[J]. 稀有金属材料与工程. 2004(03): 258-261.

[16] 宋杰光,王瑞花,李世斌,等. Al2O3/Fe金属基复合材料的制备工艺及性能研究[J]. 兵器材料科学与工程. 2016(04): 39-42.

[17] 姚文杰. SiCp/Cu复合材料的显微组织与性能研究[D]. 哈尔滨工业大学, 2006.

[18] 张国定. 金属基复合材料界面问题[Z]. 北京: 1996555-561.

[19] 王金星,李贺军,齐乐华. C纤维增强镁基复合材料热成形微观组织模型[J]. 塑性工程学报. 2010, 17(3): 50-55.

[20] 何静,林志君,张力,等. SiO2对Al2O3凝胶纤维相变的影响[J]. 功能材料. 2013, 44(7): 926-931.

[21] 朱艳. SiC纤维增强Ti基复合材料界面反应研究_朱艳[D]. 西北工业大学, 2003.

[22] Iwai Y, Honda T, Miyjima T. Dry sliding wear behavior of Al2O3 fiber reinforced aluminum composites[J]. Composites Science and Technology. 2000, 60: 1781-1789.

[23] 陈素玲,孙学杰. 金属基复合材料的分类及制造技术研究进展[J]. 电焊机. 2011, 41(7): 90-94.

[24] 朱明明,李卫. 镀Cu短碳纤维增强Cu基复合材料的性能[J]. 特种铸造及有色合金. 2013, 33(5): 462-465.

[25] 杨浩,朱明明,李卫. 短碳纤维增强铜基复合材料的载流摩擦磨损行为[J]. 特种铸造及有色合金. 2013(08): 765-768.

[26] Xuefei L, Hanlian L, Chuanzhen H, et al. High temperature mechanical properties of Al2O3-based ceramic tool material toughened by SiC whiskers and nanoparticles[J]. Ceramics International. 2017, 43(1): 1160-1165.

[27] 靳治良,李胜利,李武. 晶须增强体复合材料的性能与应用[J]. 盐湖研究. 2003(04): 57-66.

[28] Ray A K, Banerjee S, Fuller E R, et al. Fractography as well as fatigue and fracture of 25 wt% silicon carbide whisker reinforced alumina ceramic composite[J]. Bulletin of Materials Science. 1994, 17(6): 893-910.

[29] Tamura Y, Moshtaghioun B M, Gomez-Garcia D, et al. Spark plasma sintering of fine-grained alumina ceramics reinforced with alumina whiskers[J]. Ceramics International. 2017, 43(1): 658-663.

[30] Ahn J J, Ochiai S. Mechanical Properties of SiCw/Al Composite Degraded by Thermal Cycling[J]. Journal of Composite Materials. 2003(37): 1605-1612.

[31] 贺毅强. 颗粒增强金属基复合材料的研究进展[J]. 材料热处理技术. 2012(02): 126-133.

[32] 杨涛林,陈跃. 颗粒增强金属基复合材料的研究进展[J]. 铸造技术. 2006, 8(27): 871-873.

[33] 蒲泽林,褚景春,毛雪平. 颗粒增强金属基复合材料的制备方法综述[J]. 现代电力. 2002(06): 31-37.

[34] 刘璠,何柏林. 金属间化合物/陶瓷基复合材料发展现状与趋势[J]. 粉末冶金材料科学与工程. 2007, 12(1): 8-12.

[35] Semboshi S, Takasugi T. Fabrication of high-strength and high-conductivity Cu–Ti alloy wire by aging in a hydrogen atmosphere[J]. Journal of Alloys and Compounds. 2013, 580: S397-S400.

[36] 王德宝,吴玉程,王文芳,等. SiC颗粒表面修饰对铜基复合材料性能的影响[J]. 中国有色金属学报. 2007(11): 1814-1820.

[37] Sakhnenko N D, Ovenko O A, Ved M V. Electrodeposition and Physicomechanical Properties of Coatings and Foil of Copper Reinforced with Nanosize Aluminum Oxide[J]. Russian Journal of Applied Chemistry. 2014, 87(5): 596-600.

[38] 马飞龙. Cu-Cr-Zr合金相图的热力学计算及实验研究[D]. 东北大学, 2011.

[39] 慕思国. 高强高导Cu-Cr-Zr系合金制备新工艺及理论研究[D]. 中南大学, 2008.

[40] Zeng K J, Hamalainen M. PHASE RELATIONSHIPS IN Cu-RICH CORNER OF THE Cu-Cr-Zr PHASE DIAGRAM[J]. Scripta Metallurgica et Materialia. 1995, 32(12): 2009-2014.

[41] Batra I S, Dey G K, Kulkarni U D, et al. Microstructure and properties of a Cu–Cr–Zr alloy[J]. Journal of Nuclear Materials. 2001, 299(2): 91-100.

[42] Gierlotka W, Zhang K, Chang Y. Thermodynamic deion of the binary Cu–Zr system[J]. Journal of Alloys and Compounds. 2011, 509(33): 8313-8318.

[43] 朱胜利. Cu-Cr-Zr合金组织性能及时效动力学[D]. 大连理工大学, 2013.

[44] P. L, X. K B. Aging precipitation and recrystallization of solidified Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering A. 1999(265): 262-267.

[45] Qi W X, Tu J P, Liu F, et al. Microstructure and tribological behavior of a peak aged Cu–Cr–Zr alloy[J]. Materials Science and Engineering: A. 2003, 343(1–2): 89-96.

[46] Y Tang. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium[J]. Materials Science and Technology. 1985(1): 270-272.

[47] U H, H S. The precipitation behavior of ITER-Grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J]. Journal of Nuclear Materials. 2000(279): 31-45.

[48] Cheng J Y, Shen B, Yu F X. Precipitation in a Cu–Cr–Zr–Mg alloy during aging[J]. Materials Characterization. 2013, 81: 68-75.

[49] Xia C, Jia Y, Zhang W. Study of deformation and aging behaviors of a hot rolled–quenched Cu–Cr–Zr–Mg–Si alloy during thermomechanical treatments[J]. Materials & Design. 2012(39): 404-409.

[50] Kermajani M, Raygan S, Hanayi K, et al. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu–Cr–Zr alloy[J]. Materials & Design. 2013, 51: 688-694.

[51] Barmouz M, Araee A. Effect of SiC Particles Dispersion on the Grain Size and Mechanical Properties of Cu/SiC Metal Matrix Nanocomposites Produced via MFSP[J]. Journal of Nano Research. 2013, 26: 53-58.

[52] 蔡旭升. SiC_Cu复合材料的制备与组织性能研究[D]. 西南交通大学, 2015.

[53] 蔡旭升,吕振,朱德贵,等. SiC含量对SiCw/Cu复合材料组织与力学性能的影响[J]. 材料科学与工艺. 2015(05): 115-122.

[54] Efe G C, Altinsoy I, Yener T, et al. Characterization of cemented Cu matrix composites reinforced with SiC[J]. Vacuum. 2010, 85(5): 643-647.

[55] Gan K, Gu M. The compressibility of Cu/SiCp powder prepared by high-energy ball milling[J]. Journal of materials processing technology. 2008(199): 173-177.

[56] Akbarpour M R, Salahi E, Alikhani Hesari F, et al. Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling[J]. Ceramics International. 2014, 40(1): 951-960.

[57] Akbarpour M R, Salahi E, Alikhani Hesari F, et al. Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites[J]. Materials & Design. 2013, 52: 881-887.

[58] Barmouz M, Asadi P, Besharati Givi M K, et al. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction[J]. Materials Science and Engineering: A. 2011, 528(3): 1740-1749.

[59] Sun Y F, Fujii H. The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints[J]. Materials Science and Engineering: A. 2011, 528(16-17): 5470-5475.

[60] Wang W, Shi Q, Liu P, et al. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing[J]. Journal of Materials Processing Technology. 2009, 209(4): 2099-2103.

[61] Akramifard H R, Shamanian M, Sabbaghian M. Microstructure and mechianical properties of Cu/SiC metal matrix composite fabricated via friction stir processing[J]. Materials and Design. 2014, 18(54): 838-844.

[62] 朱德智. SiCp/Cu复合材料组织与性能研究[D]. 哈尔滨理工大学, 2005.

[63] Rado C, Drevet B, Eustathopoulos N. The role of compound formation in reactive wetting: the Cu/SiC system[J]. Acta Materialia. 2000, 48(18–19): 4483-4491.

[64] K. L H, Y. L J. Decomposition and interfacial reaction in brazing of SiC by copper-based active alloy[J]. Journal of Materials Science Letters. 1992, 35(11): 550-553.

[65] Shu K, Tu G C. The microstructure and the thermal expansion acteristics of Cu/SiCp composites[J]. Materials Science and Engineering: A. 2003, 349(1–2): 236-247.

[66] Celebi Efe G, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu–SiC composites[J]. Composites Part B: Engineering. 2012, 43(4): 1813-1822.

[67] Celebi Efe G, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu–SiC composites[J]. Materials & Design. 2012, 36: 633-639.

[68] 章林,曲选辉,段柏华,等. SiCp/Cu复合材料的SPS烧结及组织性能[J]. 稀有金属. 2008, 32(5): 258-7076.

[69] Ebrahim-Ghajari M, Allahkaram S R, Mahdavi S. Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings[J]. Surface Engineering. 2015, 31(3): 251-257.

[70] Low C T J, Wills R G A, Walsh F C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface and Coatings Technology. 2006, 201(1-2): 371-383.

[71] 华小社. Ni纳米Al2O3复合电镀工艺的研究[D]. 西安理工大学, 2006.

[72] 王宏. 纳米Al2O3颗粒增强电沉积镍抗蠕变性能研究[D]. 哈尔滨工业大学, 2013.

[73] Zeng K J, Hamalainen M. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram[J]. Scripta metallurgica et materialia. 1995, 32(12): 2009-2014.

[74] Fuxiang H, Jusheng M, Honglong N, et al. Analysis of phases in a Cu – Cr – Zr alloy[J]. Scripta Materialia. 2003, 48: 97-102.

[75] Zhang B, Zhang Z G, Li W. Effects of Thermo-mechanical Treatment on Microstructure and Properties of Cu-Cr-Zr Alloys[J]. Physics Procedia. 2013, 50: 55-60.

[76] Batra I S, Dey G K, Kulkarni U D, et al. Microstructure and properties of a Cu–Cr–Zr alloy[J]. Journal of Nuclear Materials. 2001, 299(2): 91-100.

[77] Batra I S, Dey G K, Kulkarni U D, et al. Precipitation in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering A. 2002, 356: 32-36.

[78] Cheng J Y, Yu F X, Shen B. Solute clusters and chemistry in a Cu–Cr–Zr–Mg alloy during the early stage of aging[J]. Materials Letters. 2014, 115: 201-204.

[79] Wang K, Liu K, Zhang J. Microstructure and properties of aging Cu–Cr–Zr alloy[J]. Rare Metals. 2014, 33(2): 134-138.

[80] Su J, Dong Q, Liu P, et al. Research on aging precipitation in a Cu–Cr–Zr–Mg alloy[J]. Materials Science and Engineering: A. 2005, 392(1-2): 422-426.

[81] 冯晶. CuCr合金时效析出的第一原理计算与分子动力学模拟[D]. 昆明理工大学, 2009.

[82] Zhou J, Zhu D, Tang L, et al. Microstructure and properties of powder metallurgy Cu-1%Cr-0.65%Zr alloy prepared by hot pressing[J]. Vacuum. 2016, 131: 156-163.

[83] Zhang B, Zhang Z G, Li W. Effects of thermo-mechanical treatment on microstructure and properties of Cu-Cr-Zr alloys[J]. Physics Procedia. 2013, 50: 55-60.

[84] Maki K, Ito Y, Matsunaga H, et al. Solid-solution copper alloys with high strength and high electrical conductivity[J]. Scripta Materialia. 2013, 68(10): 777-780.

[85] Biswas A, Nagesha A, Sukumaran G, et al. Low Cycle Fatigue Behaviour of a Cu-Cr-Zr-Ti Alloy[J]. Procedia Engineering. 2013, 55: 171-175.

[86] Zhang Z, Chen D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia. 2006, 54(7): 1321-1326.

[87] Zhang Z, Chen D L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites[J]. Materials Science and Engineering: A. 2008, 483-484: 148-152.

[88] Dai J Y, Mu S G, Wang Y R. Study on Hot Deformation Behavior and Processing Maps of Cu-0.35Cr-0.15Zr Alloy[J]. Advanced Materials Research. 2011, 189-193: 1456-1464.

[89] Purcek G, Yanar H, Saray O, et al. Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy[J]. Wear. 2014, 311(1-2): 149-158.

[90] Peng L J, Xie H F, Huang G J, et al. Dynamics of Phase Transformation in Cu-Cr-Zr Alloy[J]. Advanced Materials Research. 2014, 887-888: 333-337.

[91] 谷硕. Cu_SiC纳米复合镀层的制备及性能预测研究 [D]. 东北石油大学, 2013.

[92] Celebi Efe G, Yener T, Altinsoy I, et al. The effect of sintering temperature on some properties of Cu–SiC composite[J]. Journal of Alloys and Compounds. 2011, 509(20): 6036-6042.

[93] Hu J, Li D Y, Llewellyn R. Computational investigation of microstructural effects on abrasive wear of composite materials[J]. Wear. 2005, 259(1-6): 6-17.

[94] 李杨绪. 纳米颗粒增强石墨-铜复合材料的制备及性能研究[D]. 西南交通大学, 2016.

馆藏位置:

 TB333 S 2017    

开放日期:

 2017-05-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式