- 无标题文档
查看论文信息

中文题名:

 42CrMo钢力学性能研究及其动态本构描述    

姓名:

 卢也森    

学号:

 0000207605    

论文语种:

 中文    

学科名称:

 固体力学    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 力学与工程学院    

专业:

 力学    

第一导师姓名:

 朱志武    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-01    

答辩日期:

 2017-05-25    

外文题名:

 Mechanical properties and dynamic constitutive model of 42CrMo steel    

中文关键词:

 42CrMo钢 ; Zerilli-Armstrong模型 ; 晶体塑性理论 ; 分离式霍普金森压杆    

外文关键词:

 42CrMo steel ; Zerilli-Armstrong model ; Crystal plasticity theory ; split-Hopkinson pressure bar    

中文摘要:

42CrMo钢属于中碳高强度合金钢,作为高速列车车轴等构件的原材料,是负担列车质量的关键部件。在运行中承受冲击和旋转弯曲等多项复杂应力以及恶劣的工作环境。作为列车运行至关重要的部件,车轴材料除了考虑承受正常的设计载荷外,在当前形势下更需要考虑冲击载荷的作用。
本文包括采用RPL100设备完成材料的准静态压缩实验;采用MTS-858微力拉扭试验机完成材料的准静态拉伸实验;采用分离式霍普金森压杆设备(SHPB)完成材料的冲击压缩实验;采用分离式霍普金森拉杆设备(SHTB)完成材料的冲击拉伸实验;采用Zeiss Axio Scope. A1. 光镜完成42CrMo钢不同加载应变率下的微观组织观察实验。实验结果表明,42CrMo钢,作为典型的BCC金属材料,在宽应变率范围内具有典型的高应变率及温度敏感性,同时在冲击加载实验中,出现绝热剪切的变形机制,对材料塑性变形产生重要作用。
针对材料在冲击实验中显示的高应变率相关性,采用位错理论对42CrMo钢变形机理进行解释,并改进了Zerilli-Armstrong模型,引入绝热温升软化项,因为Zerilli-Armstrong模型本身在应变硬化率上的独立性,使得改进后模型,在表征材料应变硬化、温度软化以及应变率效应时可以很好的耦合。为了验证改进的Zerilli-Armstrong模型的合理性和适用性,分别采用不考虑绝热温升的Zerilli-Armstrong模型和引入考虑绝热温升这一不容忽视因素的Zerilli-Armstrong模型,参数优化后获得的理论曲线与冲击实验结果进行比较。得出改进的Zerilli-Armstrong模型,可以很好地描述及预测不同应变率下42CrMo钢的流动应力。
针对42CrMo钢材料显示出的典型BCC金属特性,采用热激活位错理论对材料塑性变形机理进行解释,认为造成准静态到动态力学性能不同的原因在于,不同的滑移系开动条件以及Peierls势垒的高率敏感性。对基于晶体塑性理论的本构模型进行了研究,结合BCC金属塑性变形机理,在剪切变形率演化中引入宏观应变率项,在硬化演化中引入绝热温升软化项。经验证,模型对模拟多晶下准静态实验结果体现出很好适应性,同时,模拟多晶下冲击实验结果也能很好体现应变率效应及热软化效应。
 

外文摘要:

42CrMo steel is strong and tough and is mainly used for manufacturing axles and other components of high-speed trains; in addition, after the quenching and tempering process, it has a higher fatigue limit and resistance to repeated impact. Since axles are essential components, in addition to the consideration of normal design loads, the effect of impact loading needs to be considered more specifically. Therefore, studies on the mechanical properties of 42CrMo steel, especially dynamic mechanical properties, are receiving increased attention.
In this study, the quasi-static compression of 42CrMo steel at three different strain rates was studied by RPL100 and the quasi-static tension at three different strain rates was studied by MTS-858. Dynamic compression experiments at three different strain rates are using the split-Hopkinson pressure bar (SHPB) set-up and dynamic tension experiments at three different strain rates are using the split-Hopkinson tension bar (SHTB) set-up. metallographic observation was performed using Zeiss Axio Scope. A1. The results show that, 42CrMo steel, which belongs to typical BCC metal, has high sensitivity of strain rates and temperature under a wide range of strain rates. Particularly, adiabatic shear has been found to be prevalent in high-speed deformation and impact damage.
According to the dynamic experiments, a strain-rate effect is evident in the yield behavior and the strain hardening. The dislocation theory explains the deformation mechanism of 42CrMo steel. Furthermore, a new constitutive model, which includes the thermal softening effect, based on the Zerilli–Armstrong constitutive model, is proposed to describe the dynamic mechanical behavior of 42CrMo steel. The model results are in good agreement with the experimental data, demonstrating that the proposed constitutive model describes the mechanical behavior of 42CrMo steel at various strain rates very well.
Based on the typical properties of BCC metals and the experimental results, the thermal activation theory was used to explain the deformation mechanism of 42CrMo steel. In addition, the high temperature and strain-rate sensitivity of the Peierls stress are the main causes of the strain-rate and softening effects on the macroscopic properties of 42CrMo steel.A modified model based on the crystal plasticity theory is proposed to ac for the macroscopic strain rate of 42CrMo steel and the softening caused by adiabatic temperature rise. We verified that the model describes the quasi-static and dynamic mechanical behavior of 42CrMo steel very well, particularly the effects of strain hardening and thermal softening. The results of this study demonstrate that the new constitutive model can predict the deformation trends of 42CrMo steel well over a wide range of strain rates.
 

分类号:

 O344.1    

总页码:

 61    

参考文献总数:

 52    

参考文献:

[1] T.Miokovic, V.Schulze, Influence of cyclic temperature changes on the microstructure of AISI4140 after laser surface hardening [J]. Acta Materialia. 2007, 55: 589-599.

[2] Anis Hor, Franck Morel, Jean-Lou Lebrun, Guenael Germain, An experimental investigation of the behavior of steels over large temperature and strain rate ranges [J]. International Journal of Mechanical Sciences, 2013, 67: 108-122.

[3] S.I.Kim, Y.Lee, S.M.Byon, Study on constitutive relation of AISI4140 steel subject to large strain at elevated temperatures [J]. Journal of Materials Processing Technology, 2003, 140: 84-89.

[4] Lin Yong-cheng, Chen Ming-song, Zhong Jue. Flow stress behaviors of 42CrMo steel during hot compression [J]. Journal of Central South University. (Science and Technology), 2008, 03: 549-553.

[5] A. Varvani-Farahani Fatigue-ratcheting damage assessment of steel samples under asymmetric multiaxial stress cycles [J]. Theoretical and Applied Fracture Mechanics, 2014, 73: 152-160.

[6] Andrej Zerovnik, Vili Pepel, Ivan Prebil, Robert Kunc, The yield-point phenomenon and cyclic plasticity of the uniaxially loaded specimens [J]. Materials and Design. 2016, 92: 971-977.

[7] Zhang Jiming, Yang Zhenguo, Zhang Jianfeng, LI Guangyi, LI Shouxin, Fatigue property of ultra-long life of high strength 42CrMo zero-inclusion steel [J]. Acta Metallurgica sinica, 2005, 02: 145-149.

[8] 王毛球, 董 瀚, 惠卫军, 陈思联, 翁宇庆. 热处理对42CrMo钢的耐延迟断裂性能的影响 [J]. 金属学报, 2002, 07:715-719.

[9] 刘鑫贵, 吴毅. 动车组车轴标准研究及其技术发展展望 [J]. 铁道机车车辆, 2014, 34 (6), 18-22.

[10] V. Linhart. An effect of strength of railway axle steels on fatigue resistance under press fit [J]. Engineering Fracture Mechanics, 2011, 78: 731-741.

[11] S.Beretta, A. Ghidini, F. Lombardo. Frature mechanics and scale effects in the fatigue of railway axles [J]. Engineering Fracture Mechanics, 2005, 72: 195-208.

[12] Uwe Zerbst, Michael Vormwald, Christian Andersch, Katrin Madler, Michael Pfuff. The development of a damage tolerance concept for railway components and its demonstration for a railway axle [J]. Engineering Fracture Mechanics, 2005, 72: 209-239.

[13] 刘学文, 程育仁, 田越. 车轴钢在高应变率下动态力学性能的研究 [J]. 铁道学报, 1993, 02:101-106.

[14] G R Johnson, W H Cook. A constitutive mode and data for metals subjected to large strains, high strain rate and high temperatures [C]. Proceedings of Seventh International Symposium on Ballistics, The Hague, The Netherlands, 1983, 541-547.

[15] Follansbee. P. S., Kocks, U.F., A constitutive deion of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica. 1988, 36 (1): 81-93.

[16] Chen, S.R., Gray III, G.T., Constitutive behavior of tungsten and tantalum experiments and modeling [J]. 2nd International Conference on Tungsten and Refractory Metals. McLean, VA, 17-19 October. Metal Powder Industries Federation, Princeton, NJ, 1995: 489-498.

[17] Bodner, S.R., Partom Y., Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. Journal of Applied Mechanics, June, 1975: 385-389.

[18] F J Zerilli, R W Armstrong. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61: 1816-1825.

[19] Hoge, K.G., Mukherjee, A.K., The temperature and strain rate dependence of the flow stress of tantalum [J]. Journal of Materials Science, 1977, 12: 1666-1672.

[20] Nemat-Nasser, S., Isaacs, J.B., Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys [R]. Internal report, Center of Excellence for Advanced Materials, UCSD, San Diego, CA, 1996.

[21] Taylor, G.I. And Elam, Bakerian Lecture. The distortion of an Aluminium crystal during a tensile test. C.F., Proc. R. Soc, London, A, 1923, 102: 643-667.

[22] Hill R, Rice J R. Constitutive analysis of elastic-plastic crystal at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20: 401-413.

[23] Pierce D, Asaro R J, Needleman A, An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982, 30: 1087-1119.

[24] Seeger, A., The temperature and strain-rate dependence of the flow stress of body-centered cubic metals: A theory based on kink-kink interactions [J]. Z. Metallikd, 1981, 72: 369-380.

[25] J.W. Christian, Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Meallurgical Transactions A, 1983, 14: 1237-1256.

[26] Sia Nemat-Nasser, Weiguo Guo, Mingqi Liu, Experimentally-based micromechanical modeling of dynamic response of molybdenum [J]. Scripta Materialia, 1999, 7(40): 859-872.

[27] Ito, K., Vitek, V., Atomistic study of non-Sch effects in the plastic yielding of bcc metals [J]. Philos. Mag. A, 2001, 81: 1387–1407.

[28] Vitek, V., Mrovec, M., Gröger, R., Bassani, J., Racherla, V., Yin, L., Effects of non-glide stresses on the plastic flow of single and polycrystals of molybdenum [J]. Materials Science & Engineering A, 2004, 387: 138–142.

[29] Lebensohn, R.A., Tomé, C.N., A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys [J]. Acta Metall. Mater. 1993, 41: 2611–2624.

[30] L. Stainier, A. M. Cuitino, M. Ortiz, A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals [J]. Journal of Mechanics and Physics of Solids, 2002, 50: 1511-1545.

[31] Kuchnicki, N., A.N. Cuitino, Radovitzky, R.A., Efficient and robust constitutive integrators for single-crystal plasticity modeling [J]. International Journal of Plasticity, 2006, 22: 1988-2011.

[32] Cuitino, A, Ortiz. M., Computational modeling of single crystals [J]. Modeling and Simulation in Materials Science and Engineering I, 1993: 255-263.

[33] Kuchnicki, N., Radovitzky, R.A., Cuitino,A.M., An explicit formulation for multiscale modeling of bcc metals [J]. International Journal of Plasticity, 2008: 2173-2191.

[34] Knezevic, M., Beyerlein, I.J., Lovato, M.L., Tome, C.N., A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-sch effects: Application to tantalum-tungsten alloys. [J]. International Journal of Plasticity, 2014: 93-104.

[35] GB/T7314-2005. 金属材料室温压缩试验方法 [S]. 北京:中国标准出版社, 2005.

[36] GB/T228.1-2010. Metallic materials-Tensile: Method of test at room temperature [S]. China Standard Press, 2010.

[37] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society. Section B, 2002, 62(11): 676-700.

[38] Meyers M A, Dynamic Behavior of materials, New York, USA: John Wiley& Sons, Inc. 1994: 296-324.

[39] Noble, J. P, Harding, J. Temperature measurement in the tensile Hopkinson bar test. Measure. Science. Technology. 1994, 5: 1163-1171.

[40] Guo Wei-guo, Plastic Flow Behavior and Constitutive Relation of BCC Metals [D]. Northwestern Polytechnical University, 2007.

[41] Sch, E., Boas, W., Plasticity of crystals with special reference to metals. English Translation F.A. Hughes, London, 1950.

[42] 刘瑞萍, BCC晶体中<100>{010}和1/2<111>{110}位错的芯结构及滑动机制研究 [D]. 重庆大学, 2010.

[43] J.R. Rice. Inelastic Constitutive Relations for Solids: an Internal-Variable Theory and its Application to Metal Plasticity [J]. J.Mech.Phys.Solids, 1971, 19:433-455.

[44] Guyot,M., Dorn,J.E., A critical review of the Peierls mechanism [J]. Canadian Journal of Physics, 1964, 43: 983-1016.

[45] Riqiang Liang, AkhtarS, Khan. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1999, 15: 963-980.

[46] Rajeev Kapoor, Sia Nemat-Nasser. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27: 1-12.

[47] Noble, J. P, Harding, J. Temperature measurement in the tensile Hopkinson bar test. Measure. Science. Technology. 1994, 5: 1163-1171.

[48] 彭建祥. 钽的本构关系研究 [D]. 中国工程物理研究院, 2001.

[49] Nemat-Nasser. S. Li. Y. F, Isaacs. J. B.,Experimental/computational evaluation of flow stress at high strain rates applicable to adiabatic shear banding [J]. Mechanics of Materials, 1994, 17(2-3): 111-134.

[50] Cailletaud G, Sai K, A polycrystalline model for the deion of ratcheting: Effect of intergranular and intragranular hardening [J]. Materials Science and Engineering A, 2008, 480(1-2): 24-39.

[51] 郭伟国, BCC金属的塑性流动行为及其本构关系研究 [D]. 西北工业大学, 2007.

[52] 罗娟, 基于晶体塑性理论的多晶循环本构及其有限元实现 [D]. 西南交通大学, 2011.

馆藏位置:

 O344.1 S 2017    

开放日期:

 2017-05-31    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式