- 无标题文档
查看论文信息

中文题名:

 车轮廓形对重载铁路能耗的影响研究    

姓名:

 谢彦飞    

学号:

 Y014213004    

论文语种:

 中文    

学科名称:

 交通运输工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西南交通大学    

院系:

 牵引动力国家重点实验室    

专业:

 交通运输工程    

第一导师姓名:

 金学松    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-01    

答辩日期:

 2017-05-20    

外文题名:

 STUDY ON THE INFLUENCE OF WHEEL PROFILE ON ENERGY CONSUMPTION OF HEAVY HAUL RAILWAY    

中文关键词:

 重载铁路 ; 车轮廓形 ; 动力学 ; 能耗节省量    

外文关键词:

 Heavy rail ; Wheel profile ; Dynamics ; Energy saving    

中文摘要:

众所周知,铁路运输相较于其他交通运输的主要优点在于运量大、速度快、单位运量耗能少等方面。虽然铁路运输耗能少是其自身存在的优势,但铁路运输过程中依然消耗了很大一部分的能量,为了顺应国家发展的需要,响应国家节约能源、减少排放的号召,研究铁路运输中能耗的影响因素不可或缺。铁路运输较其他运输方式最大的特点在于它的轮轨关系,因此从轮轨关系的方向去研究列车能耗的影响因素是非常具有现实意义的。
首先,实地考察了朔黄线黄骅港车站区段的铁路实际磨损情况,并测量了不同磨耗时期的LM型车轮踏面,结合线路上不同半径曲线数量的统计图,初步了解了朔黄线上的轮轨关系的主要参数。另外,通过阅读文献、查阅相关资料,得到了添加摩擦改进剂后,轮轨关系变化的参数。在掌握这些原始数据的基础上,进一步完善了能耗计算理论模型,具体是从摩擦改进剂模型的完善、摩擦功的计算方法、自旋蠕滑力矩的计算方法以及能耗计算模型的完善等方面展开分析的。最后利用动力学分析软件和数值计算软件进行详细的分析,探究不同磨耗时期的车轮廓形以及不同表面状态的钢轨对重载铁路能耗的影响。论文的主要工作和结论如下:
1.使用Simpack软件仿真建立了C80车辆的动力学模型后,查阅相关文献,确定了在实际工况中添加摩擦改进剂不但会影响轮轨摩擦系数,还会影响对应的Kalker权重系数。依据这一事实,为后续的动力学分析提供相关参数依据,修正了原有的动力学、能耗分析方法,在此基础编写了相应的数值计算程序。
2. 调查了朔黄线黄骅港车站区段轮轨关系,具体工作可以分为三个部分。第一,调查了朔黄线上钢轨表面的磨损情况,对比实测的不平顺频谱图,了解到线路上存在波长为80mm左右的波磨且钢轨表面存在严重的磨损和损伤;第二,挑选不同磨耗里程的车辆测量他们的车轮踏面,得到了0~30万千米不同磨耗时期的车轮踏面廓形;第三,结合线路上不同半径曲线数量统计表,确定了本文计算的各种工况曲线半径。
3. 通过分析C80车辆模型在改变车轮踏面廓形和钢轨表面状态时的车辆动力学性能变化,得出添加摩擦改进剂和不同磨耗时期的车轮踏面廓形对车辆动力学性能的影响。计算结果显示:随着车轮磨耗里程的增加,在两种不同表面状态的钢轨上,最大轮轨横向力、最大轮轨垂向力、最大轮重减载率、最大脱轨系数均呈现先增大再减小的趋势。添加摩擦改进剂后能够改善最大垂向轮轨力、最大轮重减载率、车辆垂向平稳性等动力学性能,整体上来看添加摩擦改进剂不会影响车辆通过的安全可靠性。
4. 研究了不同磨耗的车轮廓型、通过速度、不同曲线半径以及不同角度的轨底坡等参数对添加摩擦改进剂后车辆通过时能耗节省量的影响,还据此分析了能耗经济,分析结果表明:速度对能耗节省量的影响比较大,能耗节省量随着通过速度的增大而增大;不同角度的轨底坡也对能耗节省量有较大影响,车辆通过时的的能耗节省量随着轨底坡角度的增大而增大;磨耗经济性分析表明,当摩擦改进剂运用在朔黄线上的小半径曲线上时,每年节省电能约1.59×107 kWh,节省的等效燃煤约7.95×106 kg,减少的等效二氧化碳排放量约2.33×107 kg。
 

外文摘要:

As is well-known,rail transportation has advantages in transport volumes,velocity,energy-saving compared with other transportation. While rail transportation has a significant advantage in energy-saving,there are enormous energy consumed in rail transportation still. In order to meet the needs of national development, respond to the national call of energy-saving and emission reduction,it’s indispensable to research on the influencing factors of energy-saving in rail transportation.Rail transportation has a greatest feature in the wheel/rail relationship compared with other transportation.Therefore,it has practical significance to study the influencing factors of energy-saving from the wheel/rail relationship.
In this study,a field test of the rail tread profiles on Huanghuagang Station of Shuohuang Railway was conducted firstly, and wheel profile of LM Type with different wear times has been measured. Through the graphs of the number of curves of different radius on Shuohuang Railway, the main parameters of the wheel/rail relationship was obtained.In addition, Through reading the literature, access to relevant information, the parameters of the wheel/rail relationship were obtained after applying friction modifier.On the basis of these raw data,an energy-saving calculation theory model has been further improved combined with the improved top friction modifier model, computational method of friction work and computational method of spin creepage torque.At last,the impact of wheel tread profile of LM Type with different wear times and top friction modifier on energy-saving were analyzed by the dynamics analysis software and numerical calculation software.An introduction and the main findings of this study includes:
1.After the C80 vehicle dynamics model was established by SIMPACK software, it was found that it can not only lowering the saturated COF at the wheel/rail interface,but also affect the corresponding Kalker Weighting factor. Based on the fact, the parameters of the dynamics analysis are provided, the original dynamics and energy-saving analysis methods are corrected. On this basis, the corresponding numerical calculation program is written.
2.A field research of the wheel/rail relationship on Huanghuagang Station of Shuohuang Railway is conducted,the work can be divided into three parts.The first part, a field test of the rail tread profiles on Shuohuang Railway was conducted.Compared with measured track excitation,
it was found that there were wave mills with a wavelength of about 80 mm and severe wear and damage on the surface of the rail. The second part,
0 to 30 million meters of different wear period wheel tread profile profile was obtained from the mearsurement. The third part,combined with the graphs of the number of curves of different radius, the radius of the curves of various working conditions in this paper is determined.
3.The influence due to the application of the top of rail friction modifier and the wheel prolfile on dynamic performance is analyzed with the C80 vehicle model.Simulation result show that with the increase in wheel wear mileage,the vehicle’s wheel/rail forces,rate of wheel load reduction and derail coefficient all increase first and then decrease before and after applying  friction modifier.The existence of friction modifier can improve the wheel/rail vertical forces, rate of wheel load reduction and the vehicle’s vertical stability. So overall,the vehicle operating process is safe and stable due to the application of the friction modifier.
4.The energy-saving achieved by applying the top of rail friction modifier is calculated and analyzed under different operation conditions such as wheel tread profile with different wear times ,running speed, track curve radius,as well as rail cant and the economy caused by energy saving is studied at the same time.Simulation results show that the vehicle’s velocity has a more significant influence on energy-saving, the energy saving amount increases as the speed increases.At the same time, the rail cant also has a more significant influence on energy-saving, the energy saving amount increases as the rail cant increases.Economic analyses show that the application of the top of rail friction modifier on small radius curves helps Shuohuang Railway save 15.9 million kWh electricity every year, equivalent to saving 7.95 million kg coal burning and 23.3kg carbon dioxide emissions.
 

分类号:

 U216.4    

总页码:

 77    

参考文献总数:

 20    

参考文献:

[1] 钱立新. 国际铁路重载运输发展概况[J]. 铁道运输与经济, 2002, 24(12): 55-56.

[2] 钱立新. 世界铁路重载运输的最新进展[J]. 铁道建筑, 2007, 08: 82~88.

[3] 贾晋中, 司道林. 朔黄铁路小半径曲线轨道钢轨打磨目标型面研究[J]. 中国铁道科学, 2014, 35(4): 15-21.

[4] 胡辉. 我国铁路运输系统节能问题的研究分析[J]. 华东交通大学学报, 2011, 28(6):73-79.

[5] 金学松, 沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报, 2001, 32(2): 92-108.

[6] 秦国栋, 刘志明. 轮轨润滑技术的发展. 电力机车与城轨车辆,2001, 26(6): 7-9.

[7] 薛继连. 朔黄重载铁路轮轨关系[M]. 北京: 中国铁道出版社, 2013.

[8] 严耄耋, 付茂海. 车辆工程[M]. 北京: 中国铁道出版社, 2011.

[9] 李立东, 杨爱国. 转K6型转向架的研制[J]. 铁道车辆, 2005, 43(10): 22-26.

[10] 杜伟. 重载铁路曲线段轮轨磨耗影响因素分析[D]. 成都:西南交通大学硕士学位论文, 2012.

[11] 张红艳. 70t级新型通用敞车转K6转向架摩擦斜楔优化设计[D]. 大连: 大连交通大学硕士学位论文, 2008.

[12] 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社, 2007.

[13] A.E.W. Hobbs. A survey of creep. British Rail Dpt.DYN 52, Derby 1967.

[14] Y.Suda, T.Iwasa, etal. Development of on board friction control[J]. Wear, 2005 258: 1109–1114.

[15] R.Fries, C.Urban, et.al. Modeling of friction modifier and lubricant acteristics for rail vehicle simulations[C]. International Association of Vehicle System Dynamics Symposium, Manchester, UK, 2011.

[16] J. VanderMarel, D.T. Eadie, et.al. A predictive model of energy savings from top of rail friction control [J]. Wear, 2014, 314(1-2): 155-161.

[17] Nils Dube, 刘玺明. 德国DB铁路公司柴油机减排措施[J]. 国外内燃机车, 2011, 02: 33-39.

[18] 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社, 2007.

[19] 王孔明. 重载货车轮轨动力作用研究[D]. 成都:西南交通大学硕士学位论文, 2006.

[20] 薛继连. 朔黄重载铁路轮轨关系[M]. 北京:中国铁道出版社, 2013.

馆藏位置:

 U216.4 S 2017    

开放日期:

 2017-05-31    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式