- 无标题文档
查看论文信息

中文题名:

 沉管隧道贯通测量导线精度分析    

姓名:

 张基智    

学号:

 0000207812    

论文语种:

 中文    

学科名称:

 大地测量学与测量工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西南交通大学    

院系:

 地球科学与环境工程学院    

专业:

 测绘工程    

第一导师姓名:

 钟萍    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-19    

答辩日期:

 2017-05-20    

外文题名:

 ANALYSIS ON BREAKTHROUGH ACCURACY OF TRAVERSING FOR IMMERSED TUBE TUNNEL    

中文关键词:

 沉管隧道 ; 贯通测量 ; 沉放测量 ; 最终接头    

外文关键词:

 Immersed tube tunnel ; Breakthrough measurement ; Settlement measurement ; Final joint    

中文摘要:

我国沉管隧道技术研究起步较晚,虽然经过最近几十年的发展,已成功修建了10余座沉管隧道,但总体而言,与世界发达国家相比,我国的沉管技术仍相对落后。在此期间,国内一些高校和科研机构在沉管隧道测量领域已经取得了一定的研究成果,成功指导并修建了一批沉管隧道,但这些沉管隧道大多规模较小,对贯通测量要求较低。目前,国内针对大型沉管隧道贯通测量的研究微乎其微,但沉管隧道贯通测量工作是整个测控系统中的重要组成部分,也是关系到整个沉管隧道能否顺利贯通的重要环节。一方面,贯通测量通过对已沉管节进行洞内测量,可指导后续管节的沉放工作;另一方面,对于预制型最终接头的沉管隧道,只有通过贯通测量,得到最终接头模型,才能进行最终接头的预制及安装,保证整个沉管隧道工程顺利贯通。
本文将沉管隧道贯通测量分为洞内导线测量和最终接头测量两个部分。对于洞内导线测量部分:首先,提出了几种大致可行的测量方案;然后,通过对测角测边精度、导线边长、导线网型和加测陀螺方位角等几个因素进行分析研究,总结出各项因素对沉管隧道横向贯通误差的影响值;最后,综合分析提出了对于不同长度的沉管隧道应选择哪一种洞内导线测量方案,即能使其横向贯通误差满足设计要求。对于最终接头测量部分:主要研究分析预制型最终接头,首先提出了四种获取最终接头预制模型参数的测量方法,分别是洞内导线法、测量塔法、三维激光扫描法和声纳法;然后对各方法的测量原理及过程进行阐述,并对其测量精度进行分析;最后总结出各方法的优缺点及适用范围,可为工程应用提供参考。
本文首先介绍了沉管隧道的历史及技术发展、国内外针对沉管隧道沉放测量及贯通测量的研究现状;接着,通过对实际工程的研究学习,总结了沉管隧道建设过程中所需的各项测量工作,并分别对各环节测量原理和方法进行阐述;然后,重点探讨了贯通测量导线精度分析;最后编写了满足课题实验所需的测量数据处理程序,并通过实例验证其可行性。通过本文的研究,不仅能够对于测量人员学习了解沉管隧道测量知识提供参考,而且,在沉管隧道工程测量中,也可为施工人员制定贯通测量技术方案提供参考,同时,该研究对于沉管隧道贯通测量的进一步研究具有一定的参考价值。
 

外文摘要:

The study of immersed tube tunnel in China appeared relatively late. Although more than 10 immersed tube tunnels have been successfully developed for recent decades in China, compared with some developed ries, the technology of the immersed tube tunnel is relatively backwardness in China. In the meantime, some domestic universities and research institutions have achieved results for the study of immersed tube tunnel. Also they have successfully completed a number of immersed tunnels. At present, there are few studies about the breakthrough measurement of large-scale immersed tube tunnels are conducted. However, breakthrough measurement of immersed tunnel plays an important role for not only the entire control system, but also the successful breakthrough of the tunnel. On the one hand, breakthrough measurement of the immersed tube section, it can be used to guide the sinking of the subsequent pipe section; on the other hand, for the immersed tunnel, the final joint model can only be obtained breakthrough measurement, and then the final joint can be prefabricated and installed to ensure that the whole immersed tunnel works smoothly.
In this thesis, the breakthrough measurement of immersed tube tunnel is divided into two parts, the traversing inside the tunnel and the final joint measurement. For the traversing inside the tunnel, several feasible schemes are put forward first, which is followed by the analysis of some factors such as the precision of angle and side, the length of the traverse leg, the form of the traverse network and the gyro azimuth. Then, the influences of each factor on the transverse breakthrough precision of the immersed tube tunnel can be summarized. Finally, how to the schemes of traversing inside the tunnel can satisfy the requirements of traverse breakthrough accuracy for different lengths of the immersed tube tunnels are given in this thesis. For the final joint measurement: the prefabricated final joint is mainly studied and analyzed. Firstly, four kinds of measuring methods for obtaining the final joint preform model parameters are presented, which are the method of conducting wire in the tunnel, the measuring tower, the 3D laser scanning method and the acoustic method; Then the principle and process of each method are described, and the measurement accuracy is analyzed; Finally, the advantages and disadvantages of each method are summarized, which can provide reference for engineering practice.
Firstly, this thesis introduces the history and technology development of immersed tube tunnel, and the research status quo of the immersed tunnel measurement and penetration measurement at home and abroad; Then, through the study of the actual project, this thesis summarizes the construction of the tunnel during the construction of the required measurement work, and each link measurement principles and methods are described; Then, the precision of the traverse measurement is discussed; Finally, the test data processing program is designed to meet the requirements of the experiment. Through the study of this thesis, it can not only provide a reference for the researchers to learn the knowledge of the immersed tube tunnel, but also provide reference for the construction personnel to make the technique scheme of the breakthrough measurement for the immersed tube tunnel. Besides, the study of this thesis will help the research on the breakthrough measurement of the immersed tunnel in the future.

分类号:

 U452.1    

总页码:

 73    

参考文献总数:

 63    

参考文献:

[1] 陈绍章. 沉管隧道设计有施工[M]. 科学出版社. 2002.

[2] 钱七虎. 由桥隧并举跨江越海所引发的思考[J]. 岩土工程界. 2003,6(7):3~5.

[3] Palmstrom A, Skogheim A. New Milestones in subsea blasting at water depth of 55m [J]. Tunneling and Underground Space Technology. 2000,15(1):65~68.

[4] Soejima E K. Planning and design of Osaka Port undersea tunnel [J]. Civil Engineering in Japan. 1991(30):44~53.

[5] Kuesel T R. Alternative concepts for undersea tunnels [J]. Tunneling and Underground Space Technology. 1986,1(1):283~287.

[6] A.Glerum. Developments in Immersed Tunneling in Holland. Tunneling and Underground Space Technology. 1995,10(4):455~462.

[7] P.Andersson, A.Boden, H.Stille. Sweden “Some Swedish Experience of Longevity of Rock Support in SubSea Tunnels” Strait Crossings,J.Krokeborg (ed.) 2001 Swets & Zeitlinger Publishers Lisse. ISBN9026518455.

[8] Okimiya. Earthquake—resistant Design Features of Immersed Tunnels in Japan. TUNNELING AND UNDERGROUND SPACE TECHNOLOGY. 1995.10(4):463~475.

[9] 杨文武. 沉管隧道工程技术的发展[J]. 隧道建设. 2009.08.

[10] Under water tracking ranges for weapon evaluation. Thom EMI Company. 1988.

[11] Nestor S.Rasmussen. Conerete Immersed Tunnels—Forty years of experience. TUNNELING AND UNDERGROUND SPACE TECHNOLOGY. 1997,12:33~46.

[12] Kazunor Ito. Advanced Marine Works FOR Deepwater Immersed Tunnel In The Bosphorus Strait. Coastal Structures 2011:1177~1188.

[13] 程乐群, 刘学山, 顾冲时. 国内外沉管隧道工程发展现状研究[J]. 水电能源科学.2008,(2):112~115.

[14] 何青. 沉管隧道沉放测量研究[D]. 同济大学. 2006.

[15] Keming Hu. Numerical Simulation Of The Suspended Sediment Arising From Constructing An Immersed Tube Tunnel. Coastal Engineering 2002,3168~3180.

[16] 钟辉虹, 李树光, 刘学山等. 沉管隧道研究综述[J]. 市政技术. 2007,(6): 490~494.

[17] Dahlo T S. Nilsen B.Stability and rock cover of hard rock subsea Tunnels[J]. Tunneling and Underground Space Technology.1994,9(2):151~158.

[18] 傅琼阁. 沉管隧道的发展与展望[J]. 中国港湾建设. 2004,10(5):53~58.

[19] 赵占厂. 关于修建沉管隧道的若干技术问题[J]. 现代隧道技术. 2007,(04):5~8+15.

[20] 林鸣, 史福生等. 日本沉管隧道最终接头施工新工法[J]. 中国港湾建设. 2012.08.

[21] Hofmann W B. Global Positioning System Theory and Practice [M]. Berlin: Spring Verlag.2001.

[22] A.Gursoy. Immersed Steel Tube Tunnels: An American Experience. TUNNELING AND UNDERGROUND SPACE TECHNOLOGY. 1995(10):439~453.

[23] 黎晓刚. 沉管隧道地震反应分析研究[D]. 华南理工大学,2013.

[24] 李全海. 海底沉管对接测量[J]. 同济大学学报(自然科学版). 2005.12.

[25] 丁美, 潘永仁. 沉管隧道测量技术[J]. 现代隧道技术. 2005,42(1):11~15.

[26] 雷巨光. 沉管隧道施工控制测量方法研究[D]. 西南交通大学硕士论文. 2010.05.

[27] 刘正根, 黄宏伟, 赵永辉, 谢雄耀. 沉管隧道实时健康监测系统[J]. 地下空间与工程学报. 2008.4(6):1110~1115.

[28] 王艳宁, 熊刚. 沉管隧道技术的应用与现状分析[J]. 现代隧道技术. 2007,44(4):1~4

[29] 廖健雄. 沉管隧道管节沉放测量[J]. 人民珠江. 2014,(05):100-103.

[30] 丁美. 沉管隧道测量中值得注意的几个问题[J]. 中国市政工程,2003,(06):60-61+70.

[31] 钟贵, 弓宝江, 何敬云, 张更生. 大型绞吸船开挖岩石基槽施工技术[J]. 中国港湾建设,2016,(04):59-61.

[32] 林镇定. 抓斗式挖泥船外海深基槽精确挖泥施工工艺研究[D]. 华南理工大学. 2015.

[33] 徐捷, 王朝辉. 内河大型沉管隧道基槽浚挖施工技术[J]. 天津建设科技. 2013,(05):43~45.

[34] 顾孝烈, 鲍峰, 程效军. 测量学(第四版)[M]. 同济大学出版社.2011.2.

[35] 赵坤. 港珠澳大桥沉管隧道测控系统研究[D]. 华南理工大学硕士论文. 2015.04.

[36] 中华人民共和国行业标准. 高速铁路工程测量规范[S]. 中华人民共和国铁道部. TB10601-2009.

[37] 苏涛. 长大隧道控制测量方案设计与贯通误差估计[J]. 测绘地理信息,2013,(02):32~34+73.

[38] 尚小琦, 薛贵东, 黄爱华. 隧道工程控制测量方法[J]. 《测绘通报》测绘科学前沿技术论坛论文集.

[39] 苏志华, 周春柏, 刘晚霞. 工程测量中GPS控制测量平面与高程精度分析[J]. 测绘通报. 2012,(03):56~58+62.

[40] 冯仲科. 地下贯通工程测量方案的优化理论和方法[J]. 测绘学报. 1996.11:303~308.

[41] 袁康, 毛勇. 精密工程测量控制网布设原则及设计[J]. 采矿技术. 2013.9:56~58.

[42] 周亮, 石阳威等. 隧道贯通误差的控制与估计理论及其程序实现[J]. 测绘信息与工程. 2011,36(1): 42~44.

[43] 陈泽远. 隧道控制洞外横向贯通误差研究[J]. 西安科技大学学报. 2014.07,34(4):402~407.

[44] 付宏平, 郭际明, 张正禄. 特长隧道贯通误差预计方法研究[J]. 测绘通报. 2015(2):80~83.

[45] 李冠青, 黄声享. 超长隧道横向贯通误差分析—洞内平面控制测量部分[J]. 测绘工程. 2015.4,24(4) :25~27.

[46] 张冠军, 王兵海. 渤海海底隧道贯通误差估算及控制网精度设计[J],铁道工程学报. 2014.10: 74~78.

[47] 路伯祥, 陶国治. 隧道导线网测量误差对贯通误差影响值的严密估算方法[J].铁道学报. 1989.5:59~63.

[48] 陈军龙. 井下不同贯通测量方案的精度比较及其适用性分析[J]. 科技信息. 2011,(21):782-783.

[49] 杜传鹏. 长大隧道贯通误差分析及程序实现[D]. 西南交通大学硕士论文. 2013.05.

[50] 肖晓春, 林家祥, 何拥军, 祝建伟. 沉管隧道的一种最终接头形式及施工方法[J]. 现代隧道技术. 2005.10,42(5).

[51] 李秀华. 中央大道海河沉管隧道最终接头关键技术[J]. 成果与应用. 2013(3): 53~57.

[52] 梁懋天.佛山市汾江路南延线沉管隧道关键施工技术研究[D]. 华南理工大学硕士论文. 2013.11.

[53] 潘永仁, 彭俊等. 上海外环沉管隧道最终接头施工技术[J]. 施工技术. 2004.1,33(1).

[54] 刘凯, 陈霞. 沉管隧道钢端壳安装精度控制[J]. 隧道建设. 2012.2,32(1): 99~102.

[55] 马立广. 地面三维激光扫描测量技术研究[D]. 武汉大学硕士论文. 2005.5.

[56] 任朝军, 吕黄, 苏林王, 应宗权. 沉管隧道管节沉放实时定位测量技术现状分析[J]. 现代隧道技术. 2012.2,49(1).

[57] 翟敏, 陶秋香. 基于 MATLAB 的导线网平差软件设计及误差椭圆的绘制[J]. 测绘与空间地理信息. 2014.04,27(4): 98~103.

[58] 姚连壁, 周小川. 基于Matlab的控制网平差教学软件与应用[J]. 测绘工程. 2006.08:65~67.

[59] 史建青, 董春来. 基于Matlab的导线网平差设计与实验研究[J]. 测绘通报. 2012:142~144.

[60] 李建章. 基于Matlab的导线网平程序差设计[J]. 兰州交通大学学报. 2010.8,29(4): 88~90.

[61] 郭辉, 徐良骥. 导线网间接平差算法分析与实现[J]. 测绘科学. 2014.3,39(3): 107~110.

[62] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础习题集[M]. 武汉大学出版社. 2009.5.

[63] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉大学出版社. 2009.5.

馆藏位置:

 U452.1 S 2017    

开放日期:

 2017-06-06    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式