- 无标题文档
查看论文信息

中文题名:

 基于结构应力的高速列车铝合金焊接车体疲劳寿命预测方法研究    

姓名:

 向鹏霖    

学号:

 0000206016    

论文语种:

 中文    

学科名称:

 车辆工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 机械工程学院    

专业:

 车辆工程    

第一导师姓名:

 卢耀辉    

第一导师单位:

 西南交通大学    

完成日期:

 2017-04-14    

答辩日期:

 2017-05-19    

外文题名:

 RESEARCH ON FATIGUE LIFE PREDICTION METHOD OF ALUMINUM WELDED CARBODY FOR HIGH-SPEED TRAIN BASED ON STRUCTURE STRESS    

中文关键词:

 高速列车车体 ; 焊接疲劳 ; 结构应力 ; 主S-N曲线 ; 疲劳寿命    

外文关键词:

 high speed train carbody ; welding fatigue ; structure stress ; S-N curve ; fatigue life    

中文摘要:

高速列车采用轻量化设计和动力分散式技术,其结构和承受的载荷不同于传统的铁道机车车辆。列车车体材料采用铝合金挤压型材通过焊接工艺组装为整体,车体取消了底架中梁和横梁结构,其设备主要采用悬吊方式安装于车体底部。随着高速列车技术日趋成熟,运行速度的不断提高使得高速列车车体受到的随机载荷呈现高频和小幅值较多的特点,而且车体铝合金材料采用焊接工艺容易产生缺陷进而导致疲劳失效,因此对车体的结构强度可靠性提出了挑战。本文以某型高速列车中间车车体为研究对象,对高速服役载荷下的车体焊缝疲劳寿命预测方法进行研究,为高速列车车体的设计和维修周期的制定提供参考,对确保列车运行的安全可靠性具有重要意义。
对IIW标准中的焊接接头疲劳寿命分析方法进行了介绍,分别对名义应力、热点应力、缺口应力方法的计算步骤和适用情况进行了分析。对ASME标准中具有网格不敏感特点的结构应力方法和等效结构应力方法的原理进行了研究,建立了焊接中空管道模型,采用等效结构应力方法进行了疲劳寿命预测并与文献中的试验数据进行对比,结果表明采用主S-N曲线分析得到寿命评估结果与试验结果一致,验证了本文编制的计算程序的正确性。
通过建立车体的有限元模型,对车体的结构应力网格不敏感性进行了分析,结果表明在网格尺寸为15mm、30mm、50mm的情况下结构应力较为统一;建立了车辆多刚体系统动力学模型,施加实测轨道谱计算了车体空簧位置的载荷谱;采用Box-Behnken矩阵设计方法和多项式拟合方法建立了车体的代理模型,实现了车体的载荷谱到动态结构应力历程的转化,并对拟合结果与直接有限元法结果进行了对比分析,结果表明多项式拟合法得到的计算结果最大相对误差为3.68%,满足工程计算精度要求;由于采用车体板壳模型分析焊缝结构应力与实际焊接接头存在差异,需要对接头部位应力集中进行修正,计算得到对接接头的修正系数为1.35,搭接接头的修正系数为3.65,将采用板壳模型计算得到的结构应力修正为考虑焊接接头应力集中的结构应力。
在前述计算车体关注点动态结构应力的基础上,通过雨流计数法得到了结构应力中的薄膜应力和弯曲应力范围分量,进而转化得到关注点的等效结构应力块谱,结合主S-N曲线和Miner线性累积损伤理论对车体焊缝关注点的疲劳损伤结果及运营里程进行了计算,结果表明车体满足最高设计寿命,其疲劳薄弱点出现在侧墙两端的窗角位置;基于Paris方程对高速列车车体的疲劳关注点裂纹进行了扩展寿命分析,获得了裂纹深度随运行公里数变化的曲线,并与目前我国制定的标准检修修程进行了对比分析,为高速列车铝合金车体的检修周期制定提供参考;根据EN12663标准对铝合金车体的疲劳动应力进行了台架实验测试,分析了车体分别受到的三个不同方向载荷对车体各部位应力的影响,结果显示车体疲劳薄弱位置与疲劳分析中的结果一致。
 

外文摘要:

High speed train adopts lightweight design and dynamic dispersion technology, and its structure and load are different from traditional railway vehicles. The train carbody is made up of aluminum alloy extrusion profiles by welding and assembling, and the dle beam and the crossbeam structure are canceled in the carbody. With the rapid development of high speed train technology, the increasing speed of high-speed train makes the load of carbody has the acteristics of high frequency and small value. Moreover, the welding process of aluminum alloy profile is difficult to control and easy to lead to fatigue failure, so it is a challenge to the reliability of the structural strength. Therefore, this paper takes the carbody of a certain type of high speed train as the research object, it provides the reference for the design and maintenance cycle determination for high-speed train carbody, and it is of great significance to ensure the safety and reliability of train operation.
The fatigue life analysis method for welding joint in IIW standard is introduced, and the calculation steps and application of nominal stress, hot spot stress and notch stress method are analyzed. Then, the principle of the structural stress method and the equivalent structural stress method in the ASME standard which have the acteristics of mesh-insensitivity are studied. A welded hollow pipe model is established, and its fatigue life is carried out by the equivalent structural stress method and compared with the experimental data. The results show that the life evaluation results obtained by the analysis using the S-N curve are in agreement with the experimental results, which verifies the correctness of the calculation program developed in this paper.
By establishing a finite element model of the carbody, the mesh sensitivity were analyzed, the results show that the structural stress is uniform in the case of mesh size 15mm, 30mm, 50mm. The dynamic model of multi-rigid body system is established, and the load spectrum of the air spring position is calculated with the measured track spectrum. The Box-Behnken matrix design method and polynomial fitting method are used to establish the model of the vehicle body, and the load spectrum of the carbody is transformed into the structure dynamic stress history and compared with the direct finite element method. The result shows that the maximum error of the calculated stress range is 3.68%, which meets the requirement of engineering calculation. Because of the difference between the welded joint on shell carbody and the actual welded joint, the stress concentration of the joint should be modified. The modification factor of the butt joint is 1.35, and the modification factor of the lap joint is 3.65.
On the basis of the calculation of the dynamic stress of the carbody, the membrane stress and the bending stress range component matrix of the structural stress are obtained by the rain flow ing method, then equivalent structure stress spectrum on concerned position is transformed. According to the S-N curve method, the fatigue damage results and predicted operating mileage at the welding concerned points are carried out, and the weak points of fatigue appear at the corner of the two sides of the side wall. Based on the Paris formula, the crack propagation life of concerned positions on high-speed train carbody is analyzed, the curves of the crack depth against kilometers are obtained, and the comparison with the standard maintenance and repair mileage request in our ry is analyzed, this paper provides a reference for the determination of maintenance cycle for aluminum alloy carbody. According to the EN12663 standard, the fatigue dynamic stress of aluminum alloy carbody was tested, the influence of loads in three different directions on the stress of each part of the carbody is analyzed, and the results show that the fatigue weak position is consistent with the above fatigue analysis.
 

分类号:

 U270.1    

总页码:

 99    

参考文献总数:

 76    

参考文献:

[1]杨国伟,魏宇杰,赵桂林,等.高速列车的关键力学问题[J].力学进展, 2015,45(1):217-460.

[2]徐飞.中国高铁的全球战略价值[J].人民论坛•学术前沿,2016,(2):6-20.

[3]缪炳荣,张卫华,邓永权,等. 新一代中国高速铁路动车组面临的技术挑战与策略研究[J].中国工程科学, 2015,17(4):98-112.

[4]张卫华,王伯铭.中国高速列车的创新发展[J].机车电传动,2010,(1):8-12+69.

[5]森久史,彭惠民,蔡千华. 铁道车辆车体的轻量化和高刚度化技术[J].国外机车车辆工艺, 2012(4):26-30.

[6]宫岛,周劲松,孙文静,等. 基于格林函数法的铁道车辆弹性车体垂向振动分析[J]. 机械工程学报, 2013,49(12):116-122.

[7]J. Zhang, J. Li, H. Tian, G. Gao, John Sheridan. Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance[J]. Journal of Fluids and Structures, 2016,61(4):249-261.

[8]卢耀辉,冯振,陈天利,等. 气动载荷影响下的高速列车车体疲劳强度评估方法[J]. 交通运输工程学报,2014,14(6):44-50.

[9]屈升. 高速列车车体疲劳强度研究[D]. 成都:西南交通大学, 2013.

[10]霍立兴.焊接结构的断裂行为及评定[M]. 北京:机械工业出版社,2000.

[11]李会,郭继祥,何小勃,等. 铝合金MIG焊常见焊接缺陷分析及预防措施[J]. 电焊机, 2013,43(4):72-76.

[12]Santos T, Vilaça P, Quintino L. Developments in NDT for detecting imperfections in friction stir welds in aluminium alloys[J]. Welding in the World, 2008, 52(9-10):30-37.

[13]兆文忠,李季涛,方吉. 轨道车辆焊接结构抗疲劳设计过程中的认识误区[J].大连交通大学学报, 2016, 37(5): 1-7.

[14]Fricke W. IIW guideline for the assessment of weld root fatigue[J]. Welding in the World Le Soudage Dans Le Monde, 2013, 57(6):753-791.

[15]Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components – a comprehensive code recently d[J]. International Journal of Fatigue, 2009, 31(1):50-58.

[16]杨谋存. 结构耐久性分析方法研究及其在轨道车辆上的应用[D]. 南京:南京航空航天大学, 2007.

[17]Beuth Verlag Gmb H. EN12663-1/2010. Railway application-Structural requirements of railway vehicle bodies [S]. Berlin:CNE,2010.

[18]Japanese Industrial Standards Committee. JIS E7106. Rolling stock-general requirements of carbody structure for passenger car[S]. Tokyo:Jpn. Ind. Stand,2006.

[19]Jelaska D. On the Goodman's fatigue safety factor[J]. International Journal of Advanced Engineering, 2011, 5 (1):27-34.

[20]ORE Frage B12/RP17-1982. Standarisierung der Gutterwagen. Utrecht:Banth Verlag. 1982.

[21]Huang Y M, Wang T S. Two-axle bogie design for electrical multiple unit: part 1: finite element analysis for bogie frame fatigue strength[J]. International Journal of Materials and Product Technology, 1999,14(1):74-101.

[22]Kim J S. Fatigue assessment of tilting bogie frame for Korean tilting train analysis and static tests[J]. Engineering Failure Analysis,2006,13(8):1326-1337.

[23]中华人民共和国铁道部. 200km/h及以上速度级铁道车辆强度设计及实验鉴定暂行规定[S].2001.

[24]Radaj D, Sonsino C M, Fricke W. Recent developments in local concepts of fatigue assessment of welded joints[J]. International Journal of Fatigue,2009, 31(1):2-11.

[25]Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components-a comprehensive code recently d[J]. International Journal of Fatigue, 2009,31(1):50-58.

[26]Hobbacher A F. Recommendation for fatigue assessment of welded joints and components [S]. International Institute of welding, doc. XIII2151r1/ XV-1254r1-07. Paris, France, May 2007.

[27]BS 7608. Code of practice for fatigue design and assessment of steel structures [S].British Standards Institution, 2014.

[28]Dietz S, Netter H, Sachau D. Fatigue life prediction of a railway bogie under dynamic loads through simulation[J]. Vehicle System Dynamic, 1998,29,(6):385-402.

[29]卢耀辉.铁道客车转向架焊接构架疲劳可靠性研究[D]. 成都:西南交通大学, 2011.

[30]卢耀辉,冯振,曾京. 高速列车车体动应力分析方法及寿命预测研究[J]. 铁道学报, 2016,38(9):31-37.

[31]Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10):865-876.

[32]Dong P, Hong J K, Gao Z. Stresses and stress intensities at notches: ‘anomalous crack growth’ revisited[J]. International Journal of Fatigue, 2003,25(9):811-825.

[33]Dong P. Length scale of secondary stresses in fracture and fatigue[J]. International Journal of Pressure Vessels and Piping,2008,85(3):128-143

[34]Dong P. A robust structural stress method for fatigue analysis of offshore marine structures [J]. Journal of Pressure Vessel Technology, 2005, 127(1):68-74

[35]Dong P, Hong J K. Analysis of recent fatigue data using the structural stress procedure in ASME Div2 rewrite[J]. Journal of Pressure Vessel Technology, 2007, 129(3): 355-362

[36]兆文忠,魏鸿亮,方吉,李季涛. 基于主S-N曲线法的焊接结构虚拟疲劳试验理论与应用[J]. 焊接学报,2014,35(5):75-78+117.

[37]杨皓. 含初始焊接缺陷的铝合金车体疲劳寿命预测研究[D]. 大连:大连交通大学,2014.

[38]鞠盈子. 高速动车组铝合金车体焊缝疲劳寿命预测[D]. 大连:大连交通大学,2013.

[39]杨鑫华,赵峰,胡文浩,等. 基于网格不敏感结构应力的铝合金焊接接头疲劳性能分析[J]. 大连交通大学学报, 2013, 34(6):74-78.

[40]张露颖. 大轴重货车车体焊接结构抗疲劳设计[D]. 大连:大连交通大学,2014.

[41]高月华. 气动载荷下高速列车车体焊接结构疲劳寿命预测[J]. 大连交通大学学报, 2012,33(2):11-14.

[42]岳译新,刘永强,李晓峰. 基于主S-N曲线法的地铁车体焊缝疲劳分析[J]. 机车电传动, 2012(5):79-81.

[43]刘坤. 铝合金车体抗疲劳能力研究[D]. 大连:大连交通大学,2013.

[44]李晓峰. 基于虚拟疲劳试验的铁路车辆焊接结构疲劳寿命预测[D]. 大连:大连交通大学,2008.

[45]袁熙,李舜酩. 疲劳寿命预测方法的研究现状与发展[J]. 航空制造技术, 2005, (12):80-84.

[46]郦正能. 应用断裂力学[M]. 北京:北京航空航天大学出版社,2012.

[47]Shahani A R, Mohammadi S. Damage tolerance and classic fatigue life prediction of a helicopter main rotor blade[J]. Meccanica, 2016, 51(8):1-18.

[48]崔维成,祁恩荣,黄小平. 船舶结构强度预报/评估方法的现状和未来发展趋势[C]. 2005 年船舶结构力学学术会议论文集. 中国造船工程学会, 中国舟山, 2005.

[49]牛松,任慧龙,冯国庆. 基于裂纹扩展理论的船体结构疲劳评估[J]. 船舶力学, 2015,(8):958-965.

[50]张鼎,黄小平,崔维成. 一种复杂载荷作用下船舶结构疲劳裂纹扩展预报方法[J]. 船舶力学,2015,(5):541-552.

[51]Han Y, Huang X P, Zhang Y, Gui W. A comparative study of simplified sif calculation of surface cracks at weld toe[J]. Journal of Ship Mechanics, 2005,9(3):87-96.

[52]黄如旭,黄进浩,万正权. 焊接结构纵向及横向表面裂纹扩展特性有限元数值模拟[J]. 大连海事大学学报,2015,41(1):49-53.

[53]苏少普,董登科,张海英. 基于Abaqus/Python的疲劳裂纹扩展分析研究[J]. 科学技术与工程,2015,15(27):193-198.

[54]詹福宇,杨伟,王生楠,等. 基于Abaqus二次开发的机身开口损伤容限分析[J]. 机械强度,2014,36(1):116-120.

[55]项载毓,肖正明,伍星,等. 冲击载荷下铸造起重机主梁疲劳裂纹扩展寿命研究[J]. 机械强度,2015,37(4):718-724.

[56]孙环,贺利乐. 焊接结构件疲劳裂纹扩展的数值分析[J]. 机械科学与技术, 2015,34(6):840-843.

[57]王帅丽. 高速列车车体承载关键部位的焊接缺陷容限研究[D]. 哈尔滨:哈尔滨工业大学,2013.

[58]王强. CRH2型动车车体底架焊接结构可靠性研究[D]. 哈尔滨:哈尔滨工业大学, 2012.

[59]闫德俊. 高速列车底架用铝合金焊接接头疲劳裂纹扩展特性[D]. 哈尔滨:哈尔滨工业大学, 2012.

[60]Fricke W. Recommended hot-spot analysis procedure for structural details of ships and FPSOs based on round-robin FE analyses[J]. International Journal of Offshore & Polar Engineering, 2002, 12(1):40-47.

[61]Dong P, Hong J K. Analysis of hot spot stress and alternative structural stress methods[C]// ASME 2003, International Conference on Offshore Mechanics and Arctic Engineering. 2003:213-224.

[62]Kyuba H, Dong P. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint[J]. International Journal of Fatigue, 2005,27(1): 85-94.

[63]宋永增. 动车组制造工艺[M].北京:中国铁道出版社, 2011.

[64]缪炳荣,张卫华,肖守讷,等.机车车辆车体结构动应力计算方法[J].交通运输工程学报,2007,7(6):17-20,40.

[65]王开云,翟婉明,蔡成标. 秦沈客运专线轨道谱与德国轨道谱的比较[J]. 西南交通大学学报,2007,42(4):425-430.

[66]Lu Y H, Zeng J, Wu P B, et al. Modeling of rigid-flexible coupling system dynamics for railway vehicles with flexible bogie frame [C]//IEEE. 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC). Kaohsiung: IEEE, 2009: 1355-1360.

[67]卢耀辉,向鹏霖,曾京,等. 铁道客车焊接构架疲劳强度评估方法[J]. 北京交通大学学报,2016,40(6):83-88.

[68]Dong P, Hong J K. The S-N curve approach to fatigue evaluation of offshore and marine structures[C]// ASME 2004, International Conference on Offshore Mechanics and Arctic Engineering. 2004:847-855.

[69]赵峰. 基于网格不敏感结构应力的铝合金焊接接头疲劳性能分析[D]. 大连:大连交通大学,2013.

[70]张红霞,吴广贺,闫志峰,等. 5A06铝合金及其焊接接头的疲劳断裂行为[J]. 中国有色金属学报, 2013,23(2):327-335.

[71]Borrego L P, Costa J D, Jesus J S, et al. Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds[J]. Theoretical & Applied Fracture Mechanics, 2014, 70(2):68-74.

[72]刘永,王苹,马然,等. 铝合金非承载十字接头疲劳特性[J]. 焊接学报,2016,37(8):83-86.

[73]Costa J D, Jesus J S, Loureiro A, et al. Fatigue life improvement of mig welded aluminium T-joints by friction stir processing[J]. International Journal of Fatigue, 2014, 61(4):244-254.

[74]中华人民共和国铁道部. 铁路动车组运用维修规程[S]. 2013.

[75]Shen G, Glinka G. Weight functions for a surface semi-elliptical crack in a finite thickness plate[J]. Theoretical & Applied Fracture Mechanics, 1991, 15(3):247-255.

[76]宋烨. 动车组铝合金车体疲劳寿命评估理论与试验研究[D]. 成都:西南交通大学,2016.

馆藏位置:

 U270.1 S 2017    

开放日期:

 2017-05-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式