- 无标题文档
查看论文信息

中文题名:

 高速列车轮轨型面对齐及车辆模态研究    

姓名:

 胡俊波    

学号:

 0000208259    

论文语种:

 中文    

学科名称:

 载运工具运用工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 牵引动力国家重点实验室    

专业:

 载运工具运用工程    

第一导师姓名:

 罗仁    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-26    

答辩日期:

 2017-05-19    

外文题名:

 High-speed train wheel-rail profile alignment and vehicle modal analysis    

中文关键词:

 高速列车 ; 转向架 ; 蛇行运动模态 ; 悬挂模态 ; 轮轨型面对齐    

外文关键词:

 High-speed train ; Bogie ; Hunting mode ; Suspension mode ; Wheel-rail surface alignment    

中文摘要:

由于实测的车轮和钢轨型面(轮轨型面)基准坐标系会受到多种因素的干扰而与理论坐标系产生偏差,因此需要将实测的轮轨型面进行坐标变换,才能与标准坐标系对齐并对比分析。提出了将ICP算法应用于轮轨型面对齐的数据处理方法,并与传统的5种轮轨型面对齐方法进行了对比。分析表明,采用线对齐的ICP算法比传统方法效果更好,能更加准确的计算轮轨磨耗量。当测量基准坐标发生偏移和旋转时,传统方法将不再适用,而ICP算法仍然有效,可将此方法应用于轮轨型面的在线监测。
我国高速动车组在线路运营中,发生过1.0~2.5Hz范围内的车体晃动现象,这是因为在某些边界条件下,车体的悬挂模态与蛇行模态耦合发生一次蛇行,会对车辆性能产生很大的影响。通过建立经典的转向架和车辆横向动力学模型,研究了悬挂模态和蛇行模态的频率、阻尼比和振型,并对车辆悬挂模态和蛇行模态交叉耦合转换现象进行了分析。通过变参分析,研究了参数对车辆模态的影响规律。
本文的主要工作有:
(1)提出了适用于轮轨型面对齐的ICP算法,通过对比分析表明,采用线对齐方法优于传统的点对齐方法。
(2)建立了6自由度转向架横向模型,分析了特征值和特征向量与模态参数的关系,分别用振型速度追踪法和特征值速度追踪法研究了振型的连续性。
(3)从悬挂参数动态灵敏度分析和单变量分析法,对转向架的模态频率做了分析,发现一系定位刚度是最重要的影响因子。通过多元参数对转向架的模态分析发现,只有小定位刚度和小阻尼时,构架存在恢复性失稳振型,否则,只有轮对的两个永久失稳振型。
(4)建立了17自由度的车辆横向模型,分析了转向架蛇行振型和车体振型交叉耦合现象,发现在特定条件下车辆的悬挂模态与蛇行模态频率交叉时,两种振型会相互转换,而这种状态往往对应车辆的一次蛇行。通过变参分析,得到了参数对车体三个振型的影响规律。
 

外文摘要:

As the measured wheel and rail surface (wheel-rail surface) reference coordinate system will be subject to a variety of factors and is different of the theoretical coordinate system, it is necessary to the measured wheel-rail surface coordinate transformation, with the standard coordinate system Alignment and contrast analysis. It is proposed to apply the method of ICP algorithm, and compared with the traditional five kinds of alignment methods. The analysis shows that the linear alignment of the ICP algorithm is better than the traditional method, can more accurately calculate the wheel and rail wear. When the measurement reference coordinates are shifted and rotated, the traditional method will no longer apply, and the ICP algorithm will still be effective, and this method can be applied to the on-line monitoring of the wheel-rail surface.
China's high-speed EMU in the line operation, the occurrence of 1.0 ~ 2.5Hz within the body of the phenomenon of rocking, which is because in some boundary conditions, the body of the suspension mode and the meandering mode coupled with a meandering, Vehicle performance has a great impact. The frequency, damping ratio and vibration mode of suspension mode and meandering mode are studied by establishing classical bogie and vehicle lateral dynamic model, and the phenomenon of cross coupling coupling of vehicle suspension mode and meandering mode is analyzed. The influence of parameters on vehicle mode is studied by parametric analysis.
Major jobs:
The ICP algorithm is applied to the alignment of the wheel and rail surface. The comparison shows that the method of line alignment is superior to the traditional point alignment method.
The relationship between the eigenvalues and the eigenvectors and the modal parameters is analyzed. The continuity of the modes is studied by means of velocity tracing and eigenvalue velocity tracing respectively.
Based on the dynamic sensitivity analysis and univariate analysis of suspension parameters, the modal frequency of the bogie is analyzed and it is found that the positioning stiffness is the most important influence factor. The modal analysis of the bogie through the multivariate parameters shows that there is only a steady state of the unsteady vibration when there is only a small positioning stiffness and a small damping. Otherwise, there are only two permanent failure modes.
A 17-DOF vehicle transverse model was established. The phenomenon of cross-coupling between the meandering mode and the body shape of the bogie was analyzed. It was found that under the specific conditions, when the suspension mode of the vehicle crossed the frequency of the meandering mode, the two modes Conversion, and this state often corresponds to the vehicle's a snake. Through the parametric analysis, the influence of the parameters on the three modes of the vehicle body is obtained.

分类号:

 U270.1    

总页码:

 81    

参考文献总数:

 51    

参考文献:

参考文献

[1] 中国标准动车组完成60万km考核试验[J]. 铁道学报. 2016(11): 68.

[2] 朱一迪. 中国标准动车组开展高速交会试验 中车株洲所提供可靠技术支撑[J]. 机车电传动. 2016(04): 10.

[3] 朴明伟,梁树林,方照根,等. 高速转向架非线性与高铁车辆安全稳定性裕度[J]. 中国铁道科学. 2011(03): 86-92.

[4] 冈田宏. 日本新干线的现状和未来的发展[J]. 中国铁道科学. 2002(02): 21-25.

[5] 郭玉华. 欧洲铁路互联互通技术规范体系分析研究[J]. 中国铁路. 2015(09): 52-56.

[6] 铁路设施.铁路车辆运行特性的验收试验.运行性能试验和稳定性试验[S].

[7] 周清跃,田常海,张银花,等. CRH_3型动车组构架横向失稳成因分析[J]. 中国铁道科学. 2014(06): 105-110.

[8] 方静赛. 铁道车辆转向架与车体振动同步研究[D]. 西南交通大学, 2015.

[9] Wickens A H, Gilist A O. VEHICLE DYNAMICS - A PRACTICAL THEORY.[J]. Railway Engineer. 1977, 2(4): 26-34.

[10] 松平精,沈德懋. 高速轉向架的設計問題[J]. 铁道车辆译丛. 1964(04): 15-20.

[11] True H. Die berechnung der kritischen geschwindigkeit eines eisenbahnfahrzeuges: Die richtige, die falsche und die zufallsmethodeCalculation of the critical speed of a railway vehicle: The right, the wrong and the gambling way[J]. ZEVrail. 2011, 135(SUPPL.): 162-169.

[12] Wickens A H. STABILITY OF HIGH SPEED TRAINS.[J]. Physics in Technology. 1973, 4(1): 1-17.

[13] True H. Method to investigate the nonlinear oscillations of a railway vehicle[C]. Chicago, IL, USA: Publ by American Soc of Mechanical Engineers (ASME), 1988.

[14] Wickens A H. NON-LINEAR DYNAMICS OF RAILWAY VEHICLES.[J]. Vehicle System Dynamics. 1986, 15(5): 289-301.

[15] Wickens A H. STABILITY CRITERIA FOR ARTICULATED RAILWAY VEHICLES POSSESSING PERFECT STEERING.[J]. Vehicle System Dynamics. 1978, 7(4): 165-182.

[16] Wickens A H, Goodall R M, Li J. Re-evaluation of the limitations of the railway wheelset: Passive and active[J]. Vehicle System Dynamics. 2006, 44(SUPPL. 1): 14-23.

[17] 罗仁,李然,胡俊波,等. 考虑随机参数的高速列车动力学分析[J]. 机械工程学报. 2015(24): 90-96.

[18] 罗仁,曾京,戴焕云,等. 高速动车组线路运行适应性[J]. 交通运输工程学报. 2011(06): 37-43.

[19] 李然,罗仁. 低轮轨摩擦因数对高速列车横向运动稳定性影响[J]. 机械工程与自动化. 2017(01): 20-21.

[20] 罗仁,曾京,邬平波,等. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报. 2010(05): 30-35.

[21] A. F. D. Souza,P. Caravavatna,汪廷椿. 转向架蛇行振动的非线性分析[J]. 国外铁道车辆. 1986(04): 5-14.

[22] 王福天,朱昶基,陈健凡. 客车转向架横向振动的理论计算和试验分析[J]. 铁道学报. 1981(01): 14-26.

[23] 曾京,邬平波. 减振器橡胶节点刚度对铁道客车系统临界速度的影响[J]. 中国铁道科学. 2008(02): 94-98.

[24] 傅茂海,葛来熏,严隽耄. 高速机车车辆的线性和非线性随机响应以及平稳性指数预测[J]. 铁道学报. 1994(S1): 83-90.

[25] 池茂儒,张卫华,曾京,等. 蛇行运动对铁道车辆平稳性的影响[J]. 振动工程学报. 2008(06): 639-643.

[26] 朴明伟,李明星,赵强,等. 高铁车辆横向振动耦合机制及其减振技术对策[J]. 振动与冲击. 2015(03): 83-92.

[27] 罗仁,曾京. 列车系统蛇行运动稳定性分析及其与单车模型的比较[J]. 机械工程学报. 2008(04): 184-188.

[28] 郝建华,曾京,邬平波. 铁路车辆垂向减振与悬挂系统参数优化[J]. 交通运输工程学报. 2005(04): 10-14.

[29] Gao R, O'Dwyer A. Stability analysis and control synthesis of affine fuzzy systems[C]. Dublin, Ireland: Institution of Engineering and Technology, 2007.

[30] Liu S, Shen J, Liu X, et al. Stability analysis for affine fuzzy system based on fuzzy Lyapunov functions[J]. Journal of Southeast University (English Edition). 2011, 27(3): 295-299.

[31] 李从清. 系统稳定性的劳斯判据与赫尔维茨判据的等价性论证[J]. 天津城市建设学院学报. 2009(03): 207-210.

[32] 陈大伟,孙万云,翟学明. 利用霍尔维茨多项式求证劳斯判据[J]. 华北电力大学学报. 2000(02): 52-57.

[33] 贾璐. 高速车辆动力学性能评价方法研究[D]. 西南交通大学, 2011.

[34] 邢璐璐. 弹性车轮车辆动力学研究[D]. 西南交通大学, 2012.

[35] 高浩,戴焕云,倪平涛. 考虑轮对弹性的轮轨接触点算法[J]. 铁道学报. 2012(05): 26-31.

[36] 郭文浩. 弹性轮对动力学性能分析[D]. 西南交通大学, 2011.

[37] Jürgen Arnold,韩义涛,叶学艳. 轮对弹性对铁道车辆动力学性能仿真结果的影响[J]. 国外铁道车辆. 2006(05): 30-33.

[38] True H. Railway vehicle chaos and asymmetric hunting[J]. Vehicle System Dynamics. 1991, 20(Suppl): 625-637.

[39] Tanifuji K, Hanamura M, Nagai K. Chaotic behavior of wheelset rolling on rail (Experiment with scale model)[J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C. 1994, 60(573): 1602-1607.

[40] Mazilu T. Instability of a train of oscillators moving along a beam on a viscoelastic foundation[J]. Journal of Sound and Vibration. 2013, 332(19): 4597-4619.

[41] 卢凡. 基于悬架非线性特性的车辆振动状态观测算法研究[D]. 北京理工大学, 2014.

[42] 张海. 高速铁道车辆非线性稳定性的关键因素研究[D]. 中国铁道科学研究院, 2014.

[43] 吕可维. 车辆系统非线性动力学问题研究[D]. 西南交通大学, 2004.

[44] 郝鲁波. 客车模态计算与试验研究[D]. 大连理工大学, 2005.

[45] 郭延生. 大学物理实验的误差与不确定度[J]. 长春工程学院学报(自然科学版). 2003(04): 57-60.

[46] Besl P J, Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(2): 239-256.

[47] Liao Y, Xu F, Zhao X, et al. A point cloud registration method based on point cloud region and application samples[J]. Communications in Computer and Information Science. 2014, 474: 216-227.

[48] 曾京. 车辆系统的蛇行运动分叉及极限环的数值计算[J]. 铁道学报. 1996(03): 13-19.

[49] 武跃祥,徐金生,李旭东. 对于双重步QR算法的进一步研究[J]. 山西大学学报(自然科学版). 1999(01): 19-22.

[50] 胡庆婉. 常微分方程初值问题的数值求解及MATLAB实现[J]. 科技信息. 2012(07): 34-35.

[51] 张立民,董铁军. 铁道车辆悬挂系统振动特征频率灵敏度分析[J]. 振动与冲击. 2009(01): 28-31

馆藏位置:

 U270.1 S 2017    

开放日期:

 2017-05-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式