- 无标题文档
查看论文信息

中文题名:

 汶马高速某千枚岩堆积体暴雨失稳机理及土拱效应研究    

姓名:

 张肖兵    

学号:

 0000207751    

论文语种:

 中文    

学科名称:

 地质工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 地球科学与环境工程学院    

专业:

 地质资源与地质工程    

第一导师姓名:

 赵晓彦    

第一导师单位:

 西南交通大学    

完成日期:

 2017-04-28    

答辩日期:

 2017-05-23    

外文题名:

 Study on the mechanism of rainstorm instability and the soil arching effect of a phyllite accumulation in wen-ma highway    

中文关键词:

 千枚岩堆积体 ; 定向排列 ; 暴雨失稳 ; 桩间土拱    

外文关键词:

 Phyllite accumulation ; Directional arrangement ; Slope instability under rainstorm ; Soil arching between piles    

中文摘要:

新建汶(川)-马(尔康)高速公路沿线发育多处影响路线安全的千枚岩堆积体边坡。该类堆积体具有孔隙比大、透水性强等特点。大气降雨是诱发该类边坡失稳破坏的重要因素,尤其是连续高强度降雨。目前,针对千枚岩堆积体边坡中千枚岩岩块定向排列特征的研究较少,稳定性分析评价中也鲜见考虑定向性的研究。抗滑桩是最常见的边坡治理措施之一,桩间水平土拱效应被众多学者广泛认可,主要应用在桩间距的确定上,但是其在抗滑桩加桩措施组合结构的受力分配计算中的应用较少,特别是圆桩加固工程中研究更少。本文以汶马高速K54+487~K55+417段左侧千枚岩堆积体边坡为研究对象,分析了该类边坡暴雨失稳机理及考虑桩间土拱效应的桩间组合结构的力学分析方法。主要包括以下内容:
(1)通过薄片鉴定及X射线粉晶衍射实验,研究分析了研究区千枚岩的结构、构造及矿物成分特征。
(2)自工程现场取千枚岩岩块,进行千枚岩堆积体定向排列特征的模拟实验,认为千枚岩由于片理构造发育,导致一定角度下定向排列现象明显,不利于边坡稳定;
(3)通过对研究区千枚岩岩块进行室内大型粗颗粒直剪试验,研究分析了千枚岩的定向排列现象及降雨入渗对千枚岩堆积体抗剪强度的影响。
(4)采用Midas-GTS-NX软件分析了边坡的稳态特征及经历暴雨12h、24h后的瞬态特征,总结了孔隙水压力、体积含水量的分布特征及变化趋势,分析了降雨对边坡稳定性的影响,认为降雨是边坡发生失稳破坏的主要因素。
(5)运用传递系数法对边坡进行稳定性分析,采用FLAC3D软件模拟分析圆形抗滑桩桩间土拱的形状及拱高,提出了考虑桩间土拱效应的桩间组合结构的力学分析方法,并与传统设计方法进行了对比分析。
 

外文摘要:

There are multiple developed phyllite accumulations endangering the safety along Wenchuan-MaErkang Highway, which are large porosity ratio and strong water permeability. Atmospheric rainfall is an important factor in such slope failure, especially continuous high intensity rainfall. Presently,studies on the orientation acteristics of the phyllite in the slopes of the phyllite accumulation are few, so are the stability analysis. Anti-slide pile is one of the most common slope control measures. The effect of horizontal soil arching, which is widely recognized by many scholars, is mainly used in the determination of pile spacing; but the application of its force distribution calculation in anti-slide pile is less, especially in the consolidation of the round pile. This paper, based on the phyllite accumulations slope on the left side of the K54+487~ K55+417.of Wen-ma Highway, analyzes the rainstorm instability mechanism of such kind slope and the analytical method of the soil arching effect in composite slope structure. The main work is as follows:
(1)Studying the structure, geological structure and mineral composition of phyllite by thin film identification and X-ray powder diffraction experiment.
(2)Doing simulate experiments on the orientation of the phyllite accumulation carried out from the engineering site. And it is considered that the microstructures are developed due to the structural development of the microstructures, which is not conducive to the stability of the slope ;
(3)Analyzing the effect of rainfall infiltration on the shear strength of the phyllite accumulation is analyzed and studied by using the large - scale coarse - grain direct shear test.
(4)Analyzing the steady-state acteristics and the transient acteristics of the slope after rainstorm for 12h and 24h with Midas-GTS-NX software, and summarizing the distribution acteristics and trend of pore water pressure and volume water content. The impact of the impact of the slope that is the main factors of instability occurred.
The stability analysis of the slope is carried out by using the transfer coefficient method. The FLAC3D software is used to simulate the shape and arch height of the arch of the circular anti - slide pile. Then put forward the mechanical analysis method of the pile and it’s compared with the traditional design method.
 

分类号:

 TU42    

总页码:

 79    

参考文献总数:

 61    

参考文献:

[1] 王卫.堆积层滑坡发生机理及防治措施[J]. 铁道建筑, 2015, (6): 121-124. 1003-1995. 2015. 06. 31.

[2] 晏鄂川,朱大鹏,宋琨等.基于数值模拟的三峡库区典型堆积层滑坡变形预测方法[J].吉林大学学报(地球科学版), 2012, 42(2): 422-429.

[3] 贺可强,白建业,王思敬等.降雨诱发型堆积层滑坡的位移动力学特征分析[J]. 岩土力学, 2005, 26(5): 705-709.

[4] BAKER R. Inter-relations between experimental and computational aspects of slope stability analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(5): 379-401.

[5] URCIUOLI G. Strain preceding failure in infinite slopes[J].International Journal of Geomechanics, 2002, 2(1): 93-112.

[6] 谭锡畴、李春显. 四川西康地质志[M], 地质出版社. 1959.

[7] 修正祥. 四川茂注九顶山茂县群的划分及其脆足动物[C],地层古生物论文集,1984.

[8] 李湘玉. 龙门山北段水磨地区茂县群变质变形特征研究[D],成都,成都理工大学,2013.

[9] 吴春明,张志国,匡学文,汶川一理县志留系茂县群无根钩状褶皱构造初步解析[J], 四川地质学报, 1995, 15(4): 272-276.

[10] 杨烨,阎宗岭.汶马公路千枚岩路基填筑技术[J],公路交通技术,2009,12(6):14-20.

[11] 毛雪松,郑小忠,马骉,梁杰,周雷刚. 风化千枚岩填筑路基湿化变形现场试验分析[J], 岩土力学, 2011, 32(8): 2300-2306.

[12] 郑达,巨能攀.千枚岩岩石微观破裂机理与断裂特征研究[J],工程地质学报, 2011,19(3):317-322.

[13] 毛雪松,周雷刚,马骉,郑小忠,赵文义.强风化千枚岩填筑路基改良技术研究[J]. 中国公路学报, 2012, 25(2): 20-26.

[14]山田刚二,渡正亮,小桥澄治.滑坡和斜坡崩塌及其防治翻译组译,滑坡和斜坡崩塌及其防治[M].北京:科学出版社,1980.

[15] 刘超,苏立君,刘文静. 堆积层滑坡土石混合物细观结构特征研究综述[J],山地学报,2015, 33(3): 348-355.

[16] 贺可强.复杂堆积层滑坡的稳定性评价方法分析与展望[J], 青岛理工大学学报, 2016, 37(1): 1-9.

[17] 黄玮,徐卫亚,陈鸿杰等.基于改进动态规划算法的堆积体边坡稳定性分析[J].地下空间与工程学报, 2014, 10(3): 727-732.

[18] 杨继红,董金玉,黄志全等.不同含石量条件下堆积体抗剪强度特性的大型直剪试验研究[J].岩土工程学报, 2016, 38(z2): 161-166.

[19] 董倩,朱正伟,刘东燕等.崩塌堆积体的渐性破坏及稳定性分析[J].西安建筑科技大学学报(自然科学版), 2010, 42(3): 358-364.

[20] 赵国宣,林锋,王茜,黄润秋. 大型平缓堆积层滑坡形成机理研究[J], 工程地质学报,2015, 23(4): 731-737.

[21] 马春驰,李天斌,陈国庆,贾逸.地下水与开挖作用下堆积层滑坡体滑动机制分析[J],工程地质学报, 2013, 21(6): 878-884.

[22] OKA H. Impacts by the artificial landslide: re-examine the rage of nature[J]. Kagaku Asahi, 1972, 32(1): 152-153.

[23] OCHIAI H, OKADA Y, FURUYA G, et al. Fluidized landslide on a natural slope by artificial rainfall[J]. Landslides, 2004, 1(3): 211-219.

[24] OKURA Y, KITAHARA H, OCHIAI H, et al. Landslide fluidization process by flume experiments[J]. Engineering Geology, 2002, 66(1): 65-78.

[25] MORIWAKI H, INOKUCHI T, HATTANJI T, et al. Failure processes in a full-scale landslide experiment using a rainfall simulator[J].Landslides, 2004, 1(4): 277-288.

[26] BRAND E W, PREMCHITT J, PHILLIPSON H B. Relationship between rainfall and landslides[C]. Proceedings of the FourthInternational Symposium on Landslides. Vancouver, Canada: [s.n.], 1984: 377-384.

[27] SUGIYAMA T, OKADA K, MURAISH H, et al. Statistical rainfallrisk estimating method for a deep collapse of a cut slope[J]. Soils and Foundations, 1995, 35(4): 37-48.

[28] Fredlund D G. Slope stability analysis in corporating the effect of soil suction[J]. Slope Stability, 1987: 113-114.

[29] Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soil Mechanics[M]. New York: Wiley Inter Science, 1993.

[30] 徐晗,朱以文,蔡元奇等.降雨入渗条件下非饱和土边坡稳定分析[J].岩土力学,2005, 26(12): 1957-1962.

[31] 吴火珍,冯美果,焦玉勇,李海波.降雨条件下堆积层滑坡体滑动机制分析[J].岩土力学, 2010, 31(1): 324-329.

[32] 陈善雄,许锡昌,徐海滨.降雨型堆积层滑坡特征及稳定性分析[J].2005, 26: 6-10.

[33] 贺可强,郭璐,陈为公.降雨诱发堆积层滑坡失稳的位移动力评价预测模型研究[J],岩石力学与工程学报, 2015, 34: 4204-4215.

[34] 汪丁建,唐辉明,李长冬,葛云峰,易贤龙. 强降雨作用下堆积层滑坡稳定性分析[J],岩土力学, 2016, 37(2): 439-445.

[35] 朱兴隆,翁鑫荣,刘宇翼.被动桩截面形状对土拱效应的影响[J]. 西部探矿工程, 2008, 1: 29-31.

[36] 李明明,程雪松,郑刚.基坑排桩桩间土拱效应的颗粒流模拟研究[J], 三峡大学学报, 2012, 34(1): 46-53.

[37] 彭帅,汪华斌,周博,李纪伟.基于抗滑桩土拱效应形成的细观数值模拟[J],地质通报, 2013, 32(12): 1993-2000.

[38] 詹永祥,姚海林,董启朋,王家强,贺东平.松散体滑坡抗滑桩加固的土拱效应分析[J].上海交通大学学报, 2013, 47(9): 1372-1376.

[39] 王诚,石少卿,储召军,李季.基于法向应力突变的抗滑桩土拱效应模型试验研究[J],后勤工程学院学报, 2016, 32(1): 1-6.

[40] TERZAGHI K. Theoretical soil mechanics[M]. New York: John Wiley & Son, 1943.

[41] BOSSCHER J, GRAY H. Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering, 1986, 112(6): 626-645.

[42] LAWRENCE. The mechanism of load transfer in granular materials utilizing tactile pressure sensor[D]. University of Massachusetts Lowell, 2002.

[43] PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Geotechnique, 2003, 53(7): 643-653.

[44] SHUBHRA G, PATRA N R. Effect of arching on active earth pressures for rigid retaining walls considering translation mode[J]. International Journal of Geomechanics, 2008, 8(2) :123-133.

[45] A.Shelke,N.R.Patra.Effect of Arching on Uplift Capacity of Pile Groups in Sand[J]. International Journal of Geomechanics, 2008, 8(6) :347-354.

[46] 黄治云,张永兴,董捷等.桩板墙土拱效应及土压力传递特性试验研究[J].岩土力学,2013,(7):1887-1892.

[47] 赵晓彦,吴兵,李登峰等.考虑桩间水平土拱效应的边坡桩间墙组合结构受力计算方法[J].岩土工程学报,2016,38(5):811-817.

[48] 徐卫亚,周家文,石崇等.极限平衡分析中加固力对岩质边坡稳定性的影响[J].水利学报,2007,38(9):1056-1065.

[49] 陈乐求,杨恒山,林杭等.抗滑桩加固边坡稳定性及影响因素的有限元分析[J].中南大学学报(自然科学版),2011,42(2):490-494.

[50] 李涛.考虑降雨及开挖影响下的厚覆盖层边坡渗流特征及稳定性[J].中南大学学报(自然科学版), 2016, 47(5): 1708-1714.

[51] Rid, L.A. Capillary conduction of liquids through porous medium. J.phsics, vol.l, 1931: 318-333.

[52] 董育烦,孟永旭,王永明等.土坡等圆心角斜条分法与经典条分法的比较[J].河海大学学报(自然科学版),2009,37(6):697-701.

[53] 张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报, 2005, 24(3): 496-501.

[54] 张均锋,丁桦.边坡稳定性分析的三维极限平衡法及应用[J].岩石力学与工程学报, 2005, 24(3): 365-370.

[55] 连镇营,韩国城,孔宪京等.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报, 2001, 23(4):407-411.

[56] 贺续文,刘忠,廖彪等.基于离散元法的节理岩体边坡稳定性分析[J].岩土力学, 2011, 32(7): 2199-2204.

[57] 寇晓东,周维垣,杨若琼等.应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究[J].土木工程学报,2002, 35(1): 68-73..

[58] 迟广成,肖刚,陈英丽等.X射线粉晶衍射仪在千枚岩鉴定与分类中的应用[J].地质与资源, 2013, 22(5): 409-414.

[59] 冯君,江南,周德培等.顺层边坡岩层走向与边坡走向夹角对其稳定性的影响[J].工业建筑, 2008, 38(10): 76-79.

[60] 冯君,周德培,李安洪等.顺层岩质边坡开挖模型试验及稳定性影响因素分析[J].工程地质学报, 2005, 13(3): 294-299.

[61] van Genuchten MTh. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44: 892-898.

馆藏位置:

 TU42 S 2017    

开放日期:

 2017-05-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式