- 无标题文档
查看论文信息

中文题名:

 下击暴流的风场特性以及其作用下高层建筑风荷载研究    

姓名:

 刘威展    

学号:

 0000205839    

论文语种:

 中文    

学科名称:

 土木工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西南交通大学    

院系:

 土木工程学院    

专业:

 建筑与土木工程    

第一导师姓名:

 黄国庆    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-01    

答辩日期:

 2017-05-17    

外文题名:

 STUDY ON DOWNBURST AND ITS EFFECT ON HIGH-RISE BUILDING    

中文关键词:

 下击暴流 ; CFD ; 流场分析 ; 风压系数分布    

外文关键词:

 Downburst ; CFD ; Flow field analysis ; Pressure coefficient distribution    

中文摘要:

随着全球气候变暖,以下击暴流等为代表的强对流天气逐渐增多,使得对其的研究成为目前国际风工程领域的热点问题之一。下击暴流是由雷暴天气中形成的强下沉气流冲击地面后,在地面加速扩展开的一种气流过程,由于下击暴流风剖面与大气边界层风剖面差异巨大,并且在距离地面很低处会产生强风荷载,往往会导致结构破坏。我国荷载规范只给出了大气边界层风荷载,对下击暴流的这类极端风并没有考虑在内。所以对下击暴流的研究就显得至关重要。
本文基于冲击射流模型建立下击暴流三维模型,通过CFD数值方法对下击暴流的风场进行了定常数值模拟,对下击暴流的风场特征进行了重点分析。下击暴流径向风速在近地面附近达到最大值,之后随着高度增大而迅速减小,径向风速剖面与大气边界层剖面有着显著的差异。在下击暴流射流管下方距离喷射中心半径为1D的圆内都存在着正压,并且中心处压力系数接近1。不同射流速度对无量纲化的径向风速剖面影响不大,不同的射流高度H对无量纲化的径向风速剖面有着一定的影响。下击暴流的边界层的发展是呈非线性变化的。
不同径向位置r处,下击暴流风剖面不同,建筑承受风荷载作用亦不同。利用CFD方法对不同径向位置处的高层建筑模型进行了风荷载特征分析。分别将模型置于距离下击暴流核心r=0D,r=1D,r=1.5D,r=2D四个不同位置,利用SST k-ω湍流模型进行定常数值模拟。不同径向位置处模型周围流场分析:在r=0D位置处,可以看到下沉的气流垂直撞击在高层建筑模型顶面,气流撞击顶面后向四周散开,并且在模型四个侧面周围气流形成一个封闭的汽缸。在r=1D,r=1.5D,r=2D位置处,在模型迎风面下部都存在一个气流驻点,在模型的侧面中上部,流动在侧面前端发生分离,在后端又发生了再附现象,而在模型下部没有发生再附现象。
不同径向位置处模型表面风压系数分布分析:模型位于r=0D位置处时,模型各个表面均承受较大的压力,此位置处,建筑结构设计时应有着足够的抗压强度。在r=1D,r=1.5D,r=2D位置处,模型迎风面风压系数随着径向位置r的增大,峰值风压系数变小,并且在峰值风压系数附近区域风压系数变得不再饱满。在侧面与背面主要产生吸力,侧面上部,前端吸力大于后端。总体来看,径向位置对侧面、背面压力系数分布影响较小。

外文摘要:

With the aggravation of the global warming,the downburst as the representative of the strong convective weather gradually increased, making its research become one of the hottest issues in the field of international wind engineering. The downburst is a kind of airflow process that is developed by the strong sinking airflow in the thunderstorm that impacts the ground and accelerates. As the profiles of downburst and atmospheric boundary layer are different, and the downburst will produce strong wind load at a very low distance from the ground, it often brings damages to the structures. In Chinese Load Code for the design of building structures, the design wind load is based on ordinary atmospheric boundary layer wind field, downburst is not taken into ac. So the study on the downburst is extremely important.
In this paper, a three-dimensional model of the downburst is established by using the impinging jet model. The steady numerical simulation of the wind field of the downburst is carried out by CFD numerical method. The focus of downburst wind field was analyzed. The downburst wind speed reaches the maximum near the ground, and then decreases rapidly as the height increases, leading to huge difference from atmospheric boundary layer. There is a positive pressure within the circle with a radius of 1D on the wall below the torrent jet tube, and the pressure coefficient at the center is close to 1. The different jet velocities have little effect on the dimensionless wind speed profile, and the different jet height H has a certain influence on the dimensionless wind speed profile. The development of the boundary layer of the downburst is a non-linear change.
The downburst wind profiles are different in different radial positions, bringing different wind loads on the high-rise building model. The CFD method was used to analyze the wind loads in different radial locations. The SST k-ω turbulence model was used to simulate the steady-state numerical simulations, the model was placed in different radial positions, respectively, r = 0D, r = 1D, r = 1.5D, r = 2D. Analysis of flow field around model in different radial locations: In the radial position r = 0D, we can see that the sinking airflow collides vertically on the top of the structure, after striking the top surface the air flow spreads around it, and the air flow around the four sides of the model forms a closed cylinder. In the radial positions r = 1D, r = 1.5D, r = 2D , there is an airflow stagnation point in the lower part of the windward surface of the model. In the upper part of the side surface of the model, the flow separates at the front edge then attaches at the rear end. In the lower part of the side surface of the model, the flow separates at the front edge but does not attach at the rear end.
Analysis of wind pressure coefficient distribution on model surfaces in different radial locations: When the model is located at r = 0D, all surfaces of the model are subjected to greater positive pressure. In this position, the building structure should be designed with sufficient compressive strength. In the radial positions r = 1D, r = 1.5D, r = 2D, with the increase of radial position r, the peak wind pressure coefficient becomes smaller, and the wind pressure coefficient around this area becomes no longer full. The flow mainly produce suction at the side and back surfaces of the model, and in the upper part of the side surface, the front end suction is greater than the back end. In general, the radial positions have little effect on the pressure coefficient distribution at side surface and back surface.

分类号:

 TU973.32    

总页码:

 66    

参考文献总数:

 56    

参考文献:

[1]黄本才,汪从军. 结构抗风分析原理及应用[M]. 第二版. 同济大学出版社, 2008.

[2]Cao, S.Y., et al. Numerical study on turbulent boundary layers over two-dimensional hills - Effects of surface roughness and slope [J]. Journal of wind engineering and industrial Aerodynamics, 2012. 104(SI): 342-349.

[3]Mishra, A.R., D.L. James and C.W. Letchford. Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model [J]. Journal of wind engineering and industrial Aerodynamics, 2008. 96(8-9): 1258-1273.

[4]Simiu E, Scanlan R H. Wind effects on structures: fundamentals and applications to design[M]. 1996.

[5]Holmes J D. A re-analysis of record extreme wind speeds in region A [J]. Australian Journal of Structural Engineering, 2002,4(1):29-40.

[6]magono, C., thunderstorms[M], Elsevier Scientific Publishing Company, Amsterdam, 261pages,1980.

[7]Browning, K.A.,Morphology and classification of dle latitude thunderstorms[M]. University of Oklahoma Press.1986.

[8]Chen, L.Z., Letchford, C.W., Parametric study on the along-wind response of the CAARC building to downbursts in the time domain [J]. Wind Eng. Ind. Aerodyn. 2004, 92(9): 703-724.

[9]Fujita, T.T., Downburst: Microburst and Macroburst[M], Univ. of Chicago Press, Chicago, lllinios, 122 pages, 1985

[10]Fujita,T.T.. tornadoes and downbursts in the context of generalized planetary scales [J].Journal of the atmospheric sciences, 1981. 38(8): 1511-1534.

[11]Hjelmfelt M R. Structure and life cycle of microburst outflows observed in Colorado [J]. Journal of Applied Meteorology, 1988, 27(8): 900-927.

[12]Fujita, T. T. Objectives, operation, and results of project NIMROD [C]. Proceedings of 11th conference on Severe Local Storms (Kansas City, KS), American Meteorological Society, 1979, 29-266.

[13]Fujita, T. T. The downburst: microburst and macroburst: report of projects NIMROD and JAWS [R]. Satellite and Mesometeorology Research Project, Department of the Geophysical Sciences, University of Chicago, 1985.

[14]Gast, K. D.,Soeder,J. L. Supercell reak-flank downdraft as sampled in the 2002 thunderstorm outflow experiment [C]. Proceeding of 11th International Conference on Wind Engineer, Lubbock, Texas,June2-5, 2003.

[15]Lombardo, F. T. Analysis and interpretation of thunderstorm wind flow and its effects on a bluff body [D]. Doctoral thesis, Texas Tech University, 2009.

[16]Solari, G., Repetto, M. P., Burlando, M., Gaetano, P. D., Pizzo, M., Tizzi, M., Parodi, M. The wind forecast for safety management of port areas [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106(3): 266-277.

[17]Gaetano, P. D., Repetto, M. P., Repetto, T., Solari, G. Separation and classification of extreme wind events from anemometric records [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 132-143.

[18]Fujita,T.T., Andrews AFB microburst, SMRP Research Paper 205 [R]. University of Chicago. IL 1985, p38.

[19]Chen L, Letchford C W. Multi-scale correlation analyses of two lateral profiles of full scale downburst wind speeds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006,94(9):675-696.

[20]Chen L, Letchford C W. Proper orthogonal decomposition of two vertical of full-scale non-stationary corrected downburst wind speeds [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2005,93(3):187-216.

[21]董志勇.射流力学[M]. 科学出版社.

[22]Bakke P. An experimental investigation of wall jet [J]. Journal of Fluid Mechanical, 1957, 2: 467-472.

[23]Poreh M, Tsuei Y G, Cermak J E. Investigation of a turbulent radial wall jet [J]. J. Appl. Mech. Trans, 1967, ASME 34: 457-463.

[24]Holmes J D. Physical modelling of thunderstorm downdrafts by wind tunnel jet [C]. Proceedings of the second AWES Workshop, Monash University, 1992: 29-32.

[25]Cassar R. Simulation of a thunderstorm downdraft by a wind tunnel jet [R]. Summer vacation report, DBCE 92/22(M) CSIRO, Australia, February 1992.

[26]Wood, G.S., Kwok, K.C.S., Motteram, N.A., Fletcher, D.F., Physical and numerical modeling of thunderstorm downbursts [J]. Wind Eng. Ind. Aerodyn. 2001, 89: 535-552.

[27]Holmes J D. Modeling of extreme thunderstorm winds for wind loading of structures and risk assessment[C]. Proceedings of 10th International Conference on Wind Engineering, Copenhagen, Denmark, 1999, 1409-1415.

[28]Letchford C W, Illidge G. Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet [C]. Proceedings of the Tenth International Conference on Wind Engineering, Denmark, June 1999, 1907-1912.

[29]Wood G S, Kwork K C S. Physical and numerical modeling of thunderstorm downbursts[C]. Proceedings of the Tenth International Conference on Wind Engineering, Denmark, June 1999, 1919-1924.

[30]Sengupta A, Sarkar P P, Rajagopalan G. Numerical and physical simulation of thunderstorm downdraft winds and their effects on buildings [C]. Proceedings of the First American Conference in Wind Engineering, Clemson, SC, 4-6 June 2001.

[31]Chay M T, Letchford C W. Pressure distributions on a cube in a simulated thunderstorm downburst—Part A: stationary downburst observations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 711-732.

[32]Letchford C W, Chay M T. Pressure distributions on a cube in a simulated thunderstorm downburst—Part B: moving downburst observations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7): 733-753.

[33]Mason, M.S., Letchford, C.W., James, D.L., 2005. Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field acterization [J]. Journal of Wind Engineering and Industrial Aerodynamics 93, 557-580.

[34]Sengupta A, Sarkar P P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(3): 345-365.

[35]Xu, Z., Hangan, H., 2008. Scale, boundary and inlet condition effects on impinging jets [J]. Journal of Wind Engineering and Industrial Aerodynamics 96, 2383-2402.

[36]Yan Zhang, Partha Sarkar, Hui Hu. An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds [J]. Journal of Fluids and Structures.50(2014)547–564.

[37]Kim, J., Hangan, H., 2007. Numerical simulations of impinging jets with application todownbursts [J]. Journal of Wind Engineering and Industrial Aerodynamics 95, 279-298.

[38]Mason, M.S., Wood, G.S., Fletcher, D.F., 2009. Numerical simulation of downburst winds [J]. Journal of Wind Engineering and Industrial Aerodynamics 97, 523-539.

[39]Shehata A Y, EI Damatty A A, Savory E. Finite element modeling of transmission line under downburst wind loading [J]. Finite Elements in Analysis and Design, 2005, 42(1): 71-89.

[40]瞿伟廉,吉柏锋等. 下击暴流风的数值仿真研究[J]. 地震工程与工程振动, 2008, 28(5): 133-139.

[41]瞿伟廉,梁正平等. 下击暴流的特征及其对输电线塔风致倒塌的影响[J]. 地震工程与工程振动, 2010, 30(6): 120-126.

[42]瞿伟廉,王锦文.下击暴流风荷载的数值模拟[J]. 武汉理工大学学报, 2008, 30(2): 70-74.

[43]彭志伟. 雷暴冲击风风场及对低平屋盖作用的数值模拟[D]. 杭州: 浙江大学硕士学位论文, 2008: 21-68.

[44]Oseguera, R.M., Bowies, R.L. A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow [R]. NASA Technical Memorandum .July 1988.

[45]Vicroy D D. A simple, analytical, asymmetric microburst model for downdraft estimation[R]. NASA Technical Memorandum 104053, 1991.

[46]Holmes J D, Oliver S E. An Empirical Model of a Downburst [J]. Engineering Structures, 2000, 22(9):1167-1172.

[47]Chay, M.T., F. Albermani and R. Wilson. Numerical and analytical simulation of downburst wind loads [J]. Engineering Structures, 2006. 28(2): 240-254.

[48]瞿伟廉,吉柏锋与王锦文.基于改进的OBV模型的下击暴流风荷载模拟[J]. 地震工程与工程振动, 2009(01): 146-152.

[49]王福军. 计算流体力学分析-计算流体软件与应用[M].清华大学出版社.2004.

[50]傅德熏,马延文. 计算流体力学.高等教育出版社[M].2002.

[51]陈义良. 湍流计算模型. 中国科学技术大学出版社[M].1991.

[52]Chay MT. Physical modeling of thunderstorm downbursts for wind engineering applications [D]. Master thesis. Lubbock (TX,USA): Texas Tech University ;2001.

[53]徐挺.雷暴冲击风流场试验模拟[D]. 杭州:浙江大学硕士学位论文,2010:12-48.

[54]李朝.近地湍流风场的CFD模拟研究[D]. 哈尔滨:哈尔滨工业大学博士学位论文,2010:12-48.

[55]Lin,N., Letchford,C., Tamura,Y.,Liang,B., Nakamura,O. Characteristics of wind forces acting on tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005,93(3),217–242.

[56]Kim,Y., Kanda,J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(8),449–465.

馆藏位置:

 TU973.32 S 2017    

开放日期:

 2017-05-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式