- 无标题文档
查看论文信息

中文题名:

 电气化铁路隧道微波除冰仿真研究    

姓名:

 王永亮    

学号:

 0000207570    

论文语种:

 中文    

学科名称:

 电磁场与微波技术    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 物理科学与技术学院    

专业:

 电磁场与微波技术    

第一导师姓名:

 廖成    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-25    

答辩日期:

 2017-05-24    

外文题名:

 THE SIMULATION OF MICROWAVE DEICING IN ELECTRIFIED RAILWAY TUNNELS    

中文关键词:

 铁路隧道 ; 微波除冰 ; 效率 ; 温升 ; 影响因素    

外文关键词:

 Railway tunnel ; Microwave anti-icing ; Efficiency ; Temperature rise ; Influencing factors    

中文摘要:

在冬季,由于气温较低,电气化铁路隧道顶端裂缝处容易形成隧道挂冰,随着水流不断流出,挂冰越来越长,与接触网的绝缘距离越来越短,对隧道供电安全构成极大威胁。因此,解决好隧道除冰问题对电气化铁路的安全运行有着非常重要的意义。
本文基于当前人工除冰和设备除冰的不足,提出将微波加热技术应用于电气化铁路隧道除冰。该方法通过天线发射微波加热隧道裂缝渗水处的混凝土,使得渗水处温度上升,温升超过5℃,促使渗水区跨越-5℃到0℃这一水凝结成冰的温度区段,防止渗水凝结成冰,实现隧道除冰目的。主要的研究工作如下:
首先,基于微波加热理论,简要阐述了隧道微波除冰的原理和优势。根据电磁场理论,推导出微波损耗功率方程,指出影响物料吸收微波能力的因素。结合电磁波在介质中的传播特性,推导出微波在混凝土中传播的波动方程。根据热力学定律,推导出热量在混凝土中传递的导热微分方程,并依据隧道除冰实际情况,给出热边界条件。
其次,依据仿真假设条件和隧道实际情况,建立隧道微波除冰仿真模型,并分别对2.45GHz和5.8GHz时微波除冰模型的温度场分布进行仿真,分析其路径温度分布和参考点温度时间历程,对比两者之间的微波除冰效率。结果表明,相同条件下,5.8GHz的微波除冰效率是2.45GHz时的2.3倍。
最后,研究了天线输入功率、隧道风速、混凝土含水量以及环境温度等不同因素对隧道微波除冰效率的影响。其中天线输入功率与隧道微波除冰效率成正比关系,隧道风速和环境温度主要影响混凝土表面与空气之间的对流传热,隧道微波除冰效率随风速的增加和环境温度降低而降低,且隧道风速的影响比环境温度大。混凝土含水量主要决定混凝土材料的介电常数和损耗角正切,其对隧道微波除冰效率的影响最大,混凝土含水量越高,微波除冰效率越高。
 

外文摘要:

In the winter, due to the low temperature, the crack of the tunnel at the top of the electrified railway tunnel is easy to form a tunnel hanging ice, with the continuous flow of water, the hanging ice is getting longer and longer, the insulation distance with the contact network is shorter and shorter, which creates a great threat to the safety of tunnel power supply. Therefore, to solve the tunnel deicing problem has a very important significance for the safe operation of the electrified railway.
Based on the disadvantages of current artificial deicing and equipment deicing, the article proposes to apply microwave heating technology on the electrified railway tunnel deicing. The method emits microwaves through the antenna to heat the tunnel cracks in the water at the seepage of the concrete, making the water seepage temperature rise. When the temperature rise of more than 5 ℃, the temperature of the water seepage area will cross range of -5 ℃ ~0 ℃ to prevent water from freezing, which achieves the purpose of tunnel anti-icing. The main research work is as follows:
Firstly, based on the theory of microwave heating, the principle and advantage of tunnel deicing are briefly described. According to the theory of electromagnetic field, the microwave power loss equation is deduced, and the factors influencing the microwave absorption capacity of the material are pointed out. Combining the propagation acteristics of electromagnetic wave in the medium, the wave equation of microwave propagation in concrete is deduced. According to the law of thermodynamics, the thermal differential equation of heat transfer in concrete is deduced, and the thermal boundary condition is given according to the actual situation of tunnel deicing.
Secondly, according to the simulation assumptions and the actual situation of the tunnel, the microwave deicing simulation model of the tunnel is established, and the temperature field distribution of the microwave deicing model at 2.45GHz and 5.8GHz is simulated respectively. The temperature distribution of the path temperature and the temperature of the reference point were analyzed, and Comparing the microwave de-icing efficiency between the two. The results show that under the same conditions, the microwave deicing efficiency of 5.8GHz is 2.3 times of 2.45GHz.
Finally, the effects of antenna input power, tunnel wind speed, concrete water content and ambient temperature on the efficiency of tunnel microwave deicing were studied. The tunnel input power is proportional to the efficiency of tunnel microwave de-icing. The wind speed and ambient temperature of the tunnel mainly affect the convective heat transfer between the concrete surface and the air. The efficiency of tunnel de-icing decreases with the increase of wind speed and the decrease of ambient temperature. The influence of tunnel wind speed is greater than ambient temperature. The water content of concrete mainly determines the dielectric constant and loss tangent of concrete, which has the greatest influence on the efficiency of microwave dewatering. The higher the water content of concrete, the higher the efficiency of microwave deicing.
 

分类号:

 TN99    

总页码:

 61    

参考文献总数:

 50    

参考文献:

[1] 王森. 电气化铁路隧道内除冰方案初探[J]. 水电工程,2015.

[2] 魏俦元. 智能电气化铁路隧道融冰装置研究与应用[J]. 电气化铁道, 2013: 5-7.

[3] 刘再民. XGD温控装置在电气化铁路隧道冰害整治方案中的应用[J].电工技术, 2006: 31-32

[4] 彭华乔,夏祖西,苏正良,李文艳. 红外线加热技术在飞机除冰中的应用[J]. 红外技术,2008,(06): 368-370.

[5] Wuori A F.Ice-Pavement bond disbanding-surface modification and disbanding[R].Strategic Highway Research program Rpt,SHRP-H-644,National Research Council, Washington, DC, 1993.

[6] Lindroth D P, Berglund W R, Wingquist C F. Microwave thawing of frozen soils and gravels [J].Journal of Cold Regions Engineering, 1995, 9 (2):53-63.

[7] Hopstock, D.M., and Zanko, L.M. (2004, 2005). Minnesota taconite as a microwaveabsorbing road aggregate material for de-icing and pothole patching applications[R], University of Minnesota Duluth, Natural Resources Research Institute, Technical Report NRRI/TR-2004/19, 18 p.; and University of Minnesota Center for Transportation Studies, Report no. CTS 05-10.

[8] Walkiewica J W, D P Lindroth, A E Clark. Improved grind ability of taconite ores by microwave heating[R].U.S. Bureau of Mines Report of Investigations955, 1995.

[9] Zanko, L.M., Niles, H.B., and Oreskovich, J.A. (2003)., Properties and aggregate potential of coarse taconite tailings from five Minnesota taconite operations[R], University of Minnesota Duluth, Natural Resources Research Institute, Technical Report NRRI/TR-2003/44; and Local Road Research Board Report Number 2004-06, 227 p.

[10] Zanko, L.M., Fosnacht, D.R., Severson, M.J., Oreskovich, J.A., Patelke, M.M., and Hauck, S.A. (2007). The Aggregate Potential of Byproducts Generated by Minnesota’s Taconite Mining Industry: A Summary of Current Research[R], 43rd Forum on the Geology of Industrial Minerals, May 20-25, 2007, Boulder, CO.

[11] Zanko, L.M., Fosnacht, D.R., and Hauck, S.A. (2008). Research, Development, and Marketing of Minnesota’s Iron Range Aggregate Materials for Midwest and National Transportation Applications: January 2008 Progress Report to the Economic Development Administration[R], Natural Resources Research Institute, University of Minnesota, Duluth, MN, Technical Summary Report NRRI/TSR-2008/01, 92 pp.

[12] Zanko, L.M. (2008). Gray Is Green: Aggregate Potential of Minnesota Taconite Industry By-products, Use of Mine and Industrial By-products as Aggregate[C], Transportation Research Board (TRB) 88th meeting, Washington, D.C. January 14, 2009 (09-3804).

[13] Zanko, L.M., Fosnacht, D.R., Hopstock, D.M. Construction aggregate potential of minnesota taconite industry byproducts.14th Conference on Cold Regions Engineering 2009: Cold Regions Impacts on Research, Design, and Construction[C]. Duluth, MN, United states. August 31, 2009 - September 2, 2009.

[14] 关明慧,徐宇工,卢太金,等.微波加热技术在清除道路积冰中的应用[J]. 北方交通大学学报,2003,27(4):79-83.

[15] 李笑,徐宇工,刘福利.微波除冰方法研究[J].哈尔滨工业大学学报.2003,35(11):1342-1343.

[16] 美的集团有限公司.磁控管微波消除路面冰雪的方法[P].中国:200710027333, 2007-09-05.

[17] 美的集团有限公司.一种除雪机[P].中国:200520059734,2006-08-02.

[18] TANG Xiang-wei, JIAO Sheng-jie, GAO Zi-yu, et al. Study of 5.8 GHz Magnetron in Microwave Deicing[J].Journal of Electromagnetic Waves and Applications,2008,22(10):1351-1360.

[19] TANG Xiang-wei, JIAO Sheng-jie, GAO Zi-yu, et al. STUDY OF 5.8 GHz MAGNETRON IN ASPHALT PAVEMENT MAINTENANCE[J] .Journal of Electromagnetic Waves and Appliations, 2008,22(14-15): 1975-1984.

[20] 焦生杰,唐相伟,高子渝,王强.微波除冰效率关键技术研究[J]. 中国公路学报,2008,(06):121-126.

[21] 唐相伟,焦生杰,高子渝,王强.冬季道路微波除冰效率研究[J]. 中国工程机械学报,2008,(01):105-110.

[22] 焦生杰,唐相伟,高子渝,王强.环境温度对道路微波除冰效率的影响[J].长安大学学报(自然科学版),2008,(06):85-88.

[23] 唐相伟.道路微波除冰效率研究[D].西安:长安大学,2009.

[24] 徐效亮.基于电磁热耦合理论的5.8GHz微波道路除冰温度场仿真研究[D]. 西安: 长安大学, 2009.

[25] 郭德栋,沙爱民.基于微波与磁铁耦合发热效应的融雪除冰技术[J].山东大学学报(工学版),2012,(04):92-97.

[26] 高杰. 碳纤维-水泥乳化沥青砂浆加热带设计与微波除冰功能研究[D].西安:长安大学,2014.

[27] 孙凌,于文勇,贺东彪. 掺铜矿渣路面混凝土性能及微波除冰效率试验研究[A].第十一届建筑物改造与病害处理学术研讨会暨第六届工程质量学术会议论文集[C].中国老教授协会土木建筑专业委员会、中国土木工程学会工程质量分会、北京交通大学土木建筑工程学院:2016,03.

[28] 牟群英,李贤军.微波加热技术的应用与研究进展[J].物理,2004,(06):438-442.

[29] 王绍林.微波加热原理及其应用[J]. 物理,1997,(04):42-47.

[30] 王家万,王亚夫.微波加热原理及应用[J]. 吉林师范大学学报(自然科学版),2012,(04):142-144.

[31] 张天琦,崔献奎,张兆镗.微波加热原理、特性和技术优势[J].筑路机械与施工机械化,2008,(07):10-14.

[32] 朱小华,章青.介质中的电磁能量损耗及其应用[J]. 大学物理, 2012; 31(02): 25-27.

[33] 韩光泽,朱小华.介质中的电磁能量密度及其损耗[J].郑州大学学报, 2012; 44(03): 81-83.

[34] 杨儒贵.电磁场与电磁波[M].北京: 高等教育出版社,2007: 180-182.

[35] 章熙民,朱彤,安青松,等.传热学[M].中国建筑工业出版社,2014.

[36] 李友荣,吴双应.传热学[M].北京:科学出版社,2012.

[37] Hong C.Rhim. Electromagnetic Properties of Concrete at Microwave Frequency Range[J]. ACI materials journal. 1998; 95(03): 267-268.

[38] Rhim H. C. Electromagnetic properties of concrete for nondestructive testing[C].Proceedings of the International Conference on Nondestructive Testing of concrete in the Infrastructure, Dearborn, June 9-11,1993,pp.83-92.

[39] 张建荣,刘照球,刘文燕.混凝土表面自然对流换热系数的实验研究[J].四川建筑科学研究,2007,(05):143-146.

[40] 张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报,2006,(09):39-42.

[41] Saetta A, Scotta R, Vitaliani R. Stress Analysis of Concrete Structures Subjected to Variable Thermal Loads[J] . Journal of Structural Engineering, 1995, 121 (3): 446- 457.

[42] 李萌.馈源喇叭天线的研究[D].西安电子科技大学,2010:7-10.

[43] 杨儒贵.高等电磁理论[M].北京:高等教育出版社,2007.

[44] 钟顺时.天线理论与技术[M].北京:电子工业出版社,2011.

[45] 叶丽娟.对流传热系数准数关联式的探讨[J].郴州师范高等专科学校学报,2000(8):68~70.

[46] 吴大伟,张成林.对流传热系数的研究[J].现代食品科技,2006,(04):88-89.

[47] Xiaoyan Liu, Ying Xu, Chuanyan Wu. The Analysis of Affect Factors in Correct Coefficient of Surface Convective Heat Transfer Coefficient during Film Drying Process[C].2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring.2011:2267-2270.

[48] K.C.G. Ong. THERMAL STRESSES IN THE MICROWAVE HEATING OF CONCRETE[C]. SingaporeR :31st Conference on our world in concrete & structures.16-17 August 2006.

[49] M.A. Ebadian. Heat and mass transfer in a contaminated porous concrete slab with variable dielectric properties[J].Heat Mass Transfer, 1994,37(6): 1013-1027.

[50] Barringer, SA., Davis, E. A., Ayappa, K. G. Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert law predictions[J]. Journal of Food Science, 1995,60(5):1137–1142.

馆藏位置:

 TN99 S 2017    

开放日期:

 2017-05-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式