- 无标题文档
查看论文信息

中文题名:

 301L不锈钢窄间隙激光填丝焊与激光-MAG复合焊技术研究    

姓名:

 杨瑞欣    

学号:

 0000207414    

论文语种:

 中文    

学科名称:

 材料加工工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西南交通大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

第一导师姓名:

 杨涛    

第一导师单位:

 西南交通大学    

完成日期:

 2017-04-23    

答辩日期:

 2017-05-13    

外文题名:

 RESEARCH ON NARROW GAP LASER WELDING WITH FILLER WIRE AND LASER-MAG HYBRID WELDING OF THE 301L AUSTENITIC STAINLESS STEEL    

中文关键词:

 奥氏体不锈钢 ; 窄间隙激光填丝焊 ; 激光-MAG复合焊 ; 力学性能 ; 施密特因子    

外文关键词:

 Austenitic Stainless Steel ; Narrow Gap Laser Welding With Filler Wire ; Laser-MAG hybrid Welding ; Mechanical Property ; Sch factor    

中文摘要:

奥氏体不锈钢材料以其优良的耐腐蚀性、塑性和可焊性,被广泛应用于地铁不锈钢车体的制造中。本文以下一代地铁用8mm厚SUS301L-MT不锈钢为研究对象,开展了激光-MAG复合焊和窄间隙激光填丝焊工艺特性及接头性能研究,通过对焊丝熔入行为、电弧熔滴特性、焊接工艺特性、接头微观组织和综合力学性能的分析、比较,结合EBSD技术探索焊接接头微观成形机制,为进一步指导推广激光-MAG复合焊和窄间隙激光填丝焊技术的工程应用提供了实验基础和理论依据。
本文利用高速摄像技术研究了激光填丝焊的焊丝熔入行为以及激光热源对熔池的影响规律,分析了激光电弧的耦合机制,结果表明:光丝间距、焊接速度、送丝速度、激光功率和离焦量几个主要工艺参数,对熔滴过渡以及焊缝成形有着重要的影响,只有这些参数在一定范围内合理匹配才能获得良好成形的焊接接头。与激光填丝焊相比,激光-MAG复合焊的熔滴过渡稳定性以及焊缝成形较差,但是工艺参数可控范围更宽。
分析比较了301L不锈钢激光-MAG复合焊和窄间隙激光填丝焊的接头显微组织以及焊接热循环过程,结果表明:复合焊与填丝焊接头的微观组织类似,焊缝区均为奥氏体柱状晶与树枝状铁素体,热影响区和母材为奥氏体和形变马氏体;填丝焊的焊接热循环峰值温度低,冷却速度快,因此过冷度大,实际结晶温度低,晶粒更小。
比较了301L不锈钢激光-MAG复合焊和窄间隙激光填丝焊接头的综合力学性能,并绘制了纵向残余应力云图,结果表明:填丝焊、复合焊拉伸试样均断于焊缝,断裂机制为韧窝断裂;填丝焊接头的屈服强度为576MPa,抗拉强度为824MPa,断后延伸率为27.9%,均高于复合焊;填丝焊接头的硬度大于复合焊,接头软化区范围窄;两种焊接方法的纵向残余应力分布类似,均在焊缝及熔合线附近出现“应力凹陷”,复合焊的纵向残余应力峰值为600MPa,高于填丝焊的304MPa。
基于EBSD技术,通过分析焊接接头的熔池凝固结晶取向特征、晶粒形貌以及晶粒尺寸,从材料微观结构角度解释了激光-MAG复合焊与窄间隙激光填丝焊接头性能的差异,结果表明:焊缝晶粒是以<100>//<100>,{100}//{100}为主要取向关系择优生长,并形成{100}<100>织构;窄间隙激光填丝焊接头晶粒尺寸小于激光-MAG复合焊,在单向拉伸载荷条件下,填丝焊接头晶粒在{111}<110>滑移模式下的施密特因子普遍高于复合焊,位错滑移机制更易启动,因此窄间隙激光填丝焊接头的强度和塑性均优于激光-MAG复合焊。

外文摘要:

Based on the excellent performance of corrosion resistance, plasticity and weldability, austenitic stainless steel is widely applied in the manufacture of metro’s stainless steel car-body. This thesis takes 8mm thickness SUS301L-MT as research objective to study process acteristics and joint performance of Laser-MAG hybrid welding and narrow gap laser welding through the analysis of wire melting behavior, arc droplet’s acter, welding process acter, microstructure of welded joint and integrated mechanical performance. EBSD was used to explore welded joint’s microcosmic forming mechanism. This thesis provides the experimental foundation and theoretical basis for the further engineering application of Laser-MAG hybrid welding and narrow gap laser welding technology.
This thesis applies high speed video technology to study the fusion of welding wire of laser welding with filler wire and the law that exert the influences on the weld pool by laser thermal source; analyzes the laser arc’s coupling mechanism. The result indicates: wire distance, welding speed, wire feed speed, laser power and defocusing amount exert significant influences on droplet transition and formation of weld. Only when previous parameters get a reasonable matching within the certain range, can the good forming welded joint appears. Compared with laser weld with filler wire, laser-MAG hybrid welding owns worse droplet transition stability and formation of weld but the wider controllable range of process parameters.
After analyzing the weld joint’s microstructure and welding thermal cycle of laser-MAG hybrid welding and narrow gap laser welding with filler wire with 301L stainless steel respectively, the study gets a result: weld joint’s microstructures in hybrid weld and filler wire weld are similar, their weld zone are Austenitic columnar crystal and dendritic ferrite; the heat affected zone and base metal are Austenite and strain-induced Martensite; The filler wire weld’s thermal cycle owns  low peak temperature but the high cooling speed so that the condenser depression is strong, and the crystallization temperature is low, the grain is small.
The thesis compares the integrated mechanical performance of laser-MAG hybrid welding and narrow gap laser welding with filler wire with 301L stainless steel respectively and draws the stress cloud of longitudinal residential stress, the result is shown as follows: the tensile tests of filling wire welding and composite welding are broken in the weld, the fracture mechanisms are dimple fracture; the yield strength of weld joint in filler wire welding is 576MPa; the tensile strength is 824MPa, elongation is 27.9%. The three process parameters are higher than in hybrid weld. The hardness of filler wire weld’s joint is greater than hybrid weld’s, the joint soften zone is small. The distributions of residential stress in two weld process are similar that the “stress dip” appears around the weld and fusion line. The hybrid weld’s peak of longitudinal residential stress is 600MPa, which is higher than filler wire weld’s 304MPa.
Based on the EBSD technology, this study analyzes the weld joints molten pool solidification oriented feature, grain morphology and grain size. From the perspective of material microstructure, the study tries to explain the differences of property between the joints of laser-MAG hybrid welding and narrow gap laser welding with filler wire. The result is shown as follows: weld grain tends to the growth with planes of <100>//<100>,{100}//{100} and form the{100}<100> texture; narrow gap laser welding with filler wire joints’s grain size is smaller than laser-MAG hybrid’s, in the condition of uniaxial tensile load, the Sch factor of filler wire weld’s grain in {111}<110> sliding pattern is higher than hybrid weld’s and the dislocation slide mechanism is easier to be activated so that narrow gap laser welding with filler wire joints strength and plasticity are better than laser-MAG hybrid joints.

分类号:

 TG174    

总页码:

 64    

参考文献总数:

 79    

参考文献:

[1] 新井浩. 铁道车辆的车体材料及其特征[J]. 城市轨道研究,2003 (1):814.

[2] 窦广旭,王卫朝. 不锈钢车体制造技术[J]. 机车车辆工艺,2005 (5):1216.

[3] 陆世英. 不锈钢概论[M]. 北京:化学工业出版社,2013

[4] 王柏平. 高强钢厚板超窄间隙CO2激光填丝多道焊研究[D]. 上海交通大学硕士学位论文,2012

[5] 林罡明. 奥氏体不锈钢应力腐蚀及防护措施[J]. 河北化工,2012(1):60-61.

[6] 罗宏,龚敏. 奥氏体不锈钢的晶间腐蚀[J]. 腐蚀科学与防护技术,2006(5):357-360

[7] 董希青. 奥氏体不锈钢海洋大气环境下应力腐蚀开裂研究[D]. 中国科学院研究生院,2011.

[8] Jokinen T, Karhu M, Kujanpää V. Welding of thick austenitic stainless steel using Nd: yttrium aluminum-garnet laser with filler wire and hybrid process[J]. Journal of Laser Applications, 2003, 15 (4): 220-224.

[9] Katayama S, Yohei A, Mizutani M, et al. Development of Deep Penetration Welding Technology with High Brightness Laser under Vacuum[J]. Physics Procedia, 2011, 12(12): 75-80.

[10] 李亚江. 材料焊接性[M]. 北京:机械工业出版社,2010.

[11] Shiga C, Ohta A, Hiraoka K, et al. Welding in Research Project on Frontier Structural Materials[J]. Quarterly Journal of the Japan Welding Society, 1997, 66: 609-614.

[12] Yu Y C, Yang S L, Yin Y, et al. Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2125-2131.

[13] Kong F, Liu W, Ma J, et al. Feasibility study of laser welding assisted by filler wire for narrow-gap butt-jointed plates of high-strength steel[J]. Welding in the World, 2013, 57(5): 693-699.

[14] Matsunawa A, Mizutani M, Katayama S, et al. Porosity formation mechanism and its prevention in laser welding[J]. Welding International, 2003, 17(6): 431-437.

[15] 巩水利,姚伟. 铝合金激光深熔焊气孔形成机理与控制技术[J]. 焊接学报,2009,30(1):60~62.

[16] 李俐群,陶汪,朱先亮. 厚板高强钢激光填丝多层焊工艺[J]. 中国激光,2009,36(5):1251~1255.

[17] 温鹏,郑世卿,荻崎贤二,山本元道. 填充热丝激光窄间隙焊接的实验研究[J]. 中国激光,2011,38(1):1~6.

[18] 左铁钏,陈虹. 21 世纪绿色制造—激光制造技术及其应用[J]. 机械工程学报,2009,45 (10):106~110.

[19] A. Salminen. The effects of filler wire feed on the efficiency of laser welding[C]. First International 

Symposium on High-Power Laser Macroprocessing, Isamu Miyamoto. 2003.

[20] R. S. Xiao, K. Chen, T.C. Zuo, et al. Influence of the wire addition direction in CO2 laser welding 

of aluminum[C]. Proceedings of SPIE: The International Society for Optical Engineering. 2002, 49

(15): 128~137.

[21] 彭进,李俐群,林尚扬,邓洲. 铝合金液态填充焊的工艺特性分析[J]. 焊接学报. 2014,35(10):45~48.

[22] 彭进,李福泉,李俐群等. 激光液态填充焊与常规激光填丝焊特性的对比研究[J]. 中国激光,2015,42(1):114-122.

[23] Liu Q, Orme M. High precision solder droplet printing technology and the state-of-the-art[J]. Journal of Materials Processing Technology, 2001, 115(3): 271-283.

[24] R. Meister, D. Martin. Narrow-gap welding process[J]. British Welding Journal, 1966, 13(5): 252~ 

257.

[25] Zhang X, Ashida E, Tarasawa S, et al. Welding of thick stainless steel plates up to 50 mm with high brightness lasers[J]. Journal of Laser Applications, 2011, 23(2): 807-819.

[26] T. Tsukamoto, H. Kawanaka, Y. Maeda. Laser Narrow Gap Welding of Thick Carbon Steels Using 

High Brightness Laser with Beam Oscillation[C]. Proceedings of ICALEO, United states, 2011: 141~146.

[27] 刘婷,闫飞,柳桑等. GH909的窄间隙激光-熔化极气体保护焊复合焊接工艺研究[J]. 中国激光,2015,42(9):134-141.

[28] J M Roman, D Kechemair, J P Ricaud. CO2 laser welding of very large thickness materials with wire filler[J]. Welding International, 1994, 8(5): 376-379.

[29] Mahrle A, Beyer E. Hybrid laser beam welding—Classification, acteristics, and applications[J]. Journal of Laser Applications, 2006, 18(3):169-180.

[30] Ribic B, Palmer T A, Debroy T. Problems and issues in laser-arc hybrid welding[J]. International Materials Reviews, 2009, 54(4):223-244.

[31] 满达虎,王丽芳. 奥氏体不锈钢焊接热裂纹的成因及防止对策[J]. 热加工工艺,2012(11):181-184

[32] 陈彦宾. 现代激光焊接技术[M]. 北京:科学出版社,2005.

[33] Salminen A S. Effects of filler wire feed on the efficiency of laser welding[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 4831.

[34] 朱先亮. 高强钢厚板激光填丝多层焊特性研究[D]. 哈尔滨工业大学硕士学位论文,2008.

[35] 唐卓. 船用厚板高功率激光焊接工艺适应性研究[D]. 上海交通大学硕士学位论文,2008.

[36] 李俐群,陶汪,朱先亮. 厚板高强钢激光填丝多层焊工艺[J]. 中国激光,2009(5):1251-1255.

[37] 许飞. 铝合金激光填丝和电弧复合焊接技术研究[D]. 北京工业大学硕士学位论文,2009.

[38] Näsström J, Frostevarg J, Silver T. Hot-wire Laser Welding of Deep and Wide Gaps[J]. Physics Procedia, 2015, 78: 247-254.

[39] Kaplan A F H, Kim K H, Bang H S, et al. Narrow gap laser welding by multilayer hot wire addition[J]. Journal of Laser Applications, 2016, 28(2): 022410.

[40] J M Roman, D Kechemair, J P Ricaud. CO2 laser welding of very large thickness materials with wire filler[J]. Welding International, 1994, 8(5): 376-379.

[41] 日本焊接学会. 窄间隙焊接[M]. 尹士科,王振家译. 北京:机械工业出版社,1988.

[42] 周方明,王江超,周涌明,张军. 窄间隙焊接应用现状及发展趋势[J]. 焊接技术,2007(4):4-7.

[43] 张富巨,罗传红. 窄间隙焊及其新进展[J]. 焊接技术,2000(6):33-36.

[44] 张仁军. 旋转陶瓷片约束TIG电弧超窄间隙焊接技术研究[D]. 兰州理工大学硕士学位文,2007.

[45] 郑韶先,时哲,韩峰,孟倩. 超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析[J]. 焊接学报,2015(02):67-70.

[46] 周超. 超窄间隙焊接坡口宽度与工艺参数适应性研究[D]. 兰州理工大学硕士学位论文2014.

[47] 王世强,张媛,张浩. 奥氏体不锈钢窄间隙管排焊接工艺[J]. 焊接技术,2011(04):21-23.

[48] Engelhard G, Habip L M, Pellkofer D, et al. Optimization of residual welding stresses in austenitic steel piping: prooftesting and numerical simulation of welding and postwelding processes[J]. Nuclear Engineering & Design, 2000, 198(1): 141-151.

[49] 王海斗,朱丽娜,邢志国. 表面残余应力检测技术[M]. 北京:机械工业出版社,2013.

[50] 刘金艳. X射线残余应力的测量技术与应用研究[D]. 北京工业大学硕士学位论文,2009.

[51] 高中稳,刘磊,李明娜,党战伟,冀峰,高光甫,王洪志. 304不锈钢高温焊接残余应力研究[J]. 石油化工设备,2015(05:25-29.

[52] 王元清,关建,张勇,石永久,杨璐. 奥氏体316不锈钢焊接工字形截面残余应力的试验研究[J]. 工业建筑,2012(05):45-50.

[53] 赵东升,刘玉君,孙敏科,纪卓尚,邓艳萍. 碳钢与304不锈钢焊接残余应力的计算[J].焊接学报,2012(01):93-95.

[54] Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels & Piping, 2014, 113(113): 49-59.

[55] 孙承伟等. 激光辐照效应[M]. 北京:国防工业出版社,2002.

[56] 赵洪伦. 轨道车辆结构与设计[M]. 北京:中国铁道出版社,2009.

[57] 都本刚. 城轨车用不锈钢薄板焊接工艺研究[D]. 大连交通大学硕士学位论文,2007.

[58] 杨晓倩,李亚江,王娟. 304奥氏体不锈钢焊接性及焊接方法研究进展[J]. 现代焊接,2015,(12):9-13.

[59] 陈洋,吴世凯,肖荣诗. SUS301L不锈钢激光-MIG复合焊接头组织性能研究[J]. 中国激光,2014,41(1):1-6.

[60] 刘龙玺,钟元木等. 地铁用SUS301L奥氏体不锈钢激光焊焊接接头残余应力的研究[J]. 热加工工艺,2013,42(13):186-188.

[61] Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Ryumachi. [Rheumatism], 1953, 22(6): 419-606.

[62] Manson S S. Behavior of materials under conditions of thermal stress[J]. Technical Report Archive & Image Library, 1953, 7(s3-4): 661-665.

[63] Krausz K, Krausz A S. On the physical meaning of the Paris equation[J]. International Journal of Fracture, 1988, 36(2): R23-R28.

[64] 罗辉. 奥氏体不锈钢电弧焊焊接工艺分析[J]. 汽车研究与开发. 2003:55-57.

[65] 陈武柱,张旭东,任家烈. 激光焊接时焊接模式转变规律及焊接过程稳定型研[J]. 中国激光,1996,A23:657-661.

[66] 黄亚敏. 基于电子背散射衍射和纳米压痕技术的奥氏体不锈钢微结构与性能关系研究[D].武汉大学博士学位论文,2010.

[67] 黄亚敏,傅强,吴佑明等. EBSD技术在焊接接头形成机理研究中的应用[C]. 全国电子背散射衍射技术及其应用会议. 2007.

[68] 尹冬弟. Mg-11Y-5Gd-2Zn-0.5Zr (wt.%)铸造耐热镁合金高温变形、强化及断裂机制的研究[D]. 上海交通大学博士学位论文,2013.

[69] 杨进. Al-Mg-Mn-Sc-Zr合金板材平面力学各向异性研究[D]. 中南大学,2005.

[70] 张士宏,宋广胜,徐勇等. 施密特因子在镁合金微观变形机制研究中的应用[J]. 精密成形工程,2014(6):1-6.

[71] 魏齐龙,陈铮,王永欣. T1相(Al_2CuLi)对铝锂合金各向异性的贡献[J]. 有色金属工程,2002,54(3):4-8.

[72] 费豪文,卢光熙,赵子伟. 物理冶金学基础[M]. 上海科学技术出版社,1981.

[73] Kim N J, Lee E W. Effect of T 1, precipitate on the anisotropy of AlLi alloy 2090[J]. Acta Metallurgica Et Materialia, 1993, 41(3): 941-948.

[74] 杨平. 电子背散射衍射技术及其应用[M]. 金工业出版社,2007.

[75] Guo W, Li L, Dong S, et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel[J]. Optics & Lasers in Engineering, 2017, 91: 1-15.

[76] 余阳春. 激光填丝焊的焊丝熔入行为及工艺研究[D]. 华中科技大学,2010.

[77] 杨涛. Plasma-MIG电弧耦合机制及2219铝合金焊接工艺研究[D]. 哈尔滨工业大学,2013.

[78] 崔红卫. 准晶增强Mg-Zn-Y合金的塑性加工及组织形成[D]. 山东大学,2013.

[79] 史牧云. Ti-6Al-4V平板对接电子束焊变形云图与残余应力分布研究[J]. 热加工工艺,2014(11):219-221.

馆藏位置:

 TG174 S 2017    

开放日期:

 2017-05-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式