- 无标题文档
查看论文信息

中文题名:

 316L不锈钢微弧氧化复合阻氚涂层制备及其晶型调控    

姓名:

 王雪飞    

学号:

 0000207344    

论文语种:

 中文    

学科名称:

 材料加工工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

第一导师姓名:

 朱宗涛    

第一导师单位:

 西南交通大学    

完成日期:

 2017-04-30    

答辩日期:

 2017-05-13    

外文题名:

 Fabrication of novel tritium permeation barriers via hot-dipping aluminum combined with micro-arc oxidation and the Al2O3 crystalline structure adjusting in the gradient composite coating    

中文关键词:

 热浸镀铝 ; 微弧氧化 ; 复合梯度涂层 ; α-Al2O3晶种 ; Cr元素    

外文关键词:

 Hot dip aluminizing ; Micro-arc oxidation ; Composite gradient coating ; α- Al2O3 seeds ; Cr seeds    

中文摘要:

本论文综述了氧化铝阻氚涂层、热浸镀铝技术、热浸镀铝与微弧氧化复合制备技术、α-Al2O3相晶种诱导的概念、原理及研究现状,在此基础上提出了采用热浸镀铝与微弧氧化相结合的复合梯度涂层制备方法,得到具有较厚氧化铝层的复合梯度涂层,同时通过对氧化铝层进行晶型调控,提高涂层中α-Al2O3相的含量,以此作为新型阻氚涂层的研究思路。
采用热浸镀铝技术在316L不锈钢表面获得梯度涂层,用光学显微镜和扫描电镜观察了梯度涂层表面和截面的显微形貌;用能谱仪(EDS)和X射线衍射仪(XRD)分析了梯度涂层的化学成分和物相组成;综合分析了梯度涂层结构随热浸镀铝温度和时间的变化规律,并对热浸镀铝工艺进行优化;研究了梯度涂层显微硬度。结果表明:(1)316L不锈钢热浸镀铝梯度涂层结构为:基体/金属间化合物层/多相混合层/纯铝层。(2)金属间化合物层的物相组成为:FeAl3 + Fe4Al13,少量Al相富集,并嵌于铁铝金属间化合物之中,硬度最高;多相混合层的物相组成为:Al + FeAl3 + Fe4Al13,铁铝金属间化合物呈絮状均匀分散于Al相中;纯铝层只有Al相,表面存在微孔,硬度最低。(3)在700℃条件下热浸镀铝,金属间化合物层最厚。在730℃条件下热浸镀铝,多相混合层最厚。在760℃条件下热浸镀铝,纯铝层占梯度涂层比例最大。(4)优化出最合适后续微弧氧化的热浸镀铝参数为:浸镀温度760℃,浸镀时间11min。
对热浸镀铝梯度涂层进行微弧氧化,观察了微弧氧化复合梯度涂层的表面和截面形貌,分析了氧化铝陶瓷层的物相组成。结果表明:(1)微弧氧化放电仅在纯铝层表面进行,复合梯度涂层结构为:基体/金属间化合物层/多相混合层/纯铝层/氧化铝层。氧化铝层致密,与纯铝层结合良好,表面微孔尺寸小。(2)微弧氧化复合梯度涂层表面氧化铝陶瓷层由η-Al2O3相构成,没有阻氚性能最好的α-Al2O3相。
引入α-Al2O3和Cr两种晶种对氧化铝层进行晶型调控,分析氧化铝层的物相组成。结果表明:(1)基于微弧氧化α-Al2O3掺杂制备的复合梯度涂层表面的物相组成为:η-Al2O3 + α-Al2O3,掺杂α-Al2O3晶种对α-Al2O3相的生成有促进作用,同时,添加α-Al2O3颗粒后微弧放电更剧烈。(2)316L不锈钢热浸镀铝铬梯度涂层的表面纯铝层物相组成为:Al + Fe4 Al13 + Fe2 Al5 + Fe Al6 + Fe Al2 + Cr + AlCr2 + Al13Cr2。Cr元素成片状在镀层表面富集,Cr单质以颗粒的形式镶嵌在镀层中。Cr元素的掺杂促进了铝铬反应和铝铁反应的进行。(3)基于热浸镀铝Cr掺杂的微弧氧化复合梯度涂层表面的物相组成为:η-Al2O3 + α-Al2O3 + δ-Al2O3 + Cr2O3。掺杂Cr元素对α-Al2O3相的生成有促进作用,同时微弧氧化陶瓷层均匀,微孔孔径小。
 

外文摘要:

The conception,principle and developmental  states of Al2O3 tritium permeation barriers, crystal nucleus to induce α-Al2O3 formation, and hybrid techniques combining hot dip aluminizing (HDA) with micro-arc oxidation(MAO) are reviewed. On the basis of the review, FeAl/Al/Al2O3 composite gradient coating was prepared by hot-dipping aluminum and micro-arc oxidation on the surface of 316L stainless steel to increase the thickness Al2O3 tritium permeation barriers. Furthermore, the content of α-Al2O3 was improved by doping α-Al2O3 and Cr seeds.
Firstly, gradient coatings were prepared by hot dip aluminizing on the surface of 316L stainless steel substrate. The surface morphologies and cross-sectional microstructure were investigated with optical microscope (OM) and scanning electron microscopy (SEM). The energy dispersive spectrometer(EDS) and X-ray diffraction (XRD) was used to analyze the phase composition of the gradient coatings. The evolutions of the gradient structure changing with HDA temperature and time. The cross-sectional microhardness of the HDA treated specimens were studied. The results indicate that: (1) The gradient structure obtained by HDA consist of four layers from substrate to the outside: 316L substrate / intermetallic compound layer / two-phase mixed layer / pure aluminum layer. (2) The intermetallic compound layer consists of a mixture of intermetallic FeAl3+Fe4Al13 phases. The multi-phases mixed layer consists of Al+FeAl3+Fe4Al13 phases; the pure aluminum layer contains only Al. (3) The thickness of intermetallic compound layer and pure aluminum layer have maximum values at HDA temperature of 700℃and 760℃, respectively. (4) In our experiment conditions, the suitable HDA condition for MAO is developed at the HDA temperature of 760℃ and with the time of 11min. The corresponding maximum thickness of the pure aluminum layer is about 62 μm.
Secondly,then ceramic coatings were obtained on the aluminum coatings by micro-arc oxidation. The surface and cross-sectional morphologies of the composite gradient coatings were observed with OM and SEM. The phase composition of the Al2O3 ceramic coatings was analyzed with XRD. The results show that: (1) The composite gradient structure obtained by hybrid techniques of HDA and MAO consist of five layers from substrate to the outside: 316L substrate / intermetallic compound layer / two-phase mixed layer / pure aluminum layer / Al2O3 layer. (2) The phase composition of the ceramic coatings is mainly composed of η- Al2O3, without α- Al2O3.
Finally, alumina coatings were prepared through hybrid techniques of HDA and MAO with doping α-Al2O3 seeds and Cr seeds. The results show that: (1) After doping α-Al2O3 seeds in the MAO electrolyte, the Al2O3 layer was composed of both η-Al2O3 and α-Al2O3. The α-Al2O3 seeds was effective to induce the formation of α-Al2O3 in MAO coatings. (2) Cr doped gradient coatings were successfully prepared. In the surface of the coatings, Al+ Fe4Al13 + Fe2Al5 + FeAl6 + FeAl2 + Cr+ AlCr2 +Al13Cr2 phases was obtained. After doping Cr seeds in the HDA gradient coatings, the MAO Al2O3 layer was composed of η-Al2O3 +α-Al2O3 +δ-Al2O3 +Cr2O3. The inducing effect of Cr seeds was also effective.
 

分类号:

 TG174    

总页码:

 62    

参考文献总数:

 87    

参考文献:

[1] Smith D L, Konys J, Muroga T, et al. Development of coatings for fusion power applications[J]. Journal of Nuclear Materials. 2002, 307: 1314-1322.

[2] Perujo A, Forcey K S. Tritium permeation barriers for fusion technology[J]. Fusion Engineering and Design. 1995, 28: 252-257.

[3] Aiello A, Ciampichetti A, Benamati G. An overview on tritium permeation barrier development for WCLL blanket concept[J]. Journal of Nuclear Materials. 2004, 329-333: 1398-1402.

[4] Wulf S, Krauss W, Konys J. Comparison of coating processes in the development of aluminum-based barriers for blanket applications[J]. Fusion Engineering and Design. 2014, 89(9-10): 2368-2372.

[5] 郝嘉琨,山常起,金柱京,等. 316L不锈钢表面Al2O3镀层中氚的扩散渗透行为[J]. 核聚变与等离子体物理. 1996(02): 62-64.

[6] Levchuk D, Koch F, Maier H, et al. Deuterium permeation through Eurofer and alpha-alumina coated Eurofer[J]. Journal of Nuclear Materials. 2004, 328(2-3): 103-106.

[7] Chikada T, Naitoh S, Suzuki A, et al. Deuterium permeation through erbium oxide coatings on RAFM steels by a dip-coating technique[J]. Journal of Nuclear Materials. 2013, 442(1-3): 533-537.

[8] Chikada T, Suzuki A, Terai T, et al. Compatibility of erbium oxide coating with liquid lithium-lead alloy and corrosion protection effect of iron layer[J]. Fusion Engineering and Design. 2013, 88(6-8): 640-643.

[9] Chikada T, Suzuki A, Terai T. Deuterium permeation and thermal behaviors of amorphous silicon carbide coatings on steels[J]. Fusion Engeneering and Design. 2011, 86(9-11): 2192-2195.

[10] Nemanic V, Mcguiness P J, Daneu N, et al. Hydrogen permeation through silicon nitride films[J]. Journal of Alloys and Compounds. 2012, 539: 184-189.

[11] Terai T, Yoneoka T, Tanaka H, et al. Tritium permeation through austenitic stainless steel with chemically densified coating as a tritium permeation barrier[J]. Journal of Nuclear Materials. 1994, 212(B): 976-980.

[12] Chikada T, Suzuki A, Koch F, et al. Fabrication and deuterium permeation properties of erbia-metal multilayer coatings[J]. Journal of Nuclear Materials. 2013, 4421(1-3): S592-S596.

[13] 何迪. Cr2O3/Al2O3阻氢渗透涂层制备与性能研究[D]. 北京有色金属研究总院, 2014.

[14] Gao J, Zhang D, Suo J. Tritium permeation barrier based on self-healing composite materials[J]. Fusion Engineering and Design. 2010, 85(7-9): 1618-1623.

[15] Zhang K, Hatano Y. Preparation of Mg and Al phosphate coatings on ferritic steel by wet-chemical method as tritium permeation barrier[J]. Fusion Engineering and Design. 2010, 85(7-9): 1090-1093.

[16] Yao Z Y, Hao J K, Zhou C S, et al. The permeation of tritium through 316L stainless steel with multiple coatings[J]. Journal of Nuclear Materials. 2000, 283(B): 1287-1291.

[17] Benamati G, Chabrol C, Perujo A, et al. Development of tritium permeation barriers on Al base in Europe[J]. Journal of Nuclear Materials. 1999, 271: 391-395.

[18] Yang F, Wu P, Yan D, et al. Microstructure and electrical acterization of SixC1−x/Al2O3 composite coatings for nuclear fusion applications[J]. Surface and Coatings Technology. 2014, 238: 174-179.

[19] Levchuk D, Bolt H, Doebeli M, et al. Al-Cr-O thin films as an efficient hydrogen barrier[J]. Surface & Coatings Technology. 2008, 202(20): 5043-5047.

[20] 姚振宇,郝嘉琨,周长善,等. 复合膜对316L不锈钢氚渗透性能的影响[J]. 原子能科学技术. 2000(01): 66-71.

[21] 王佩璇,王宇,史宝贵. 不锈钢表面沉积SiC作为氢渗透阻挡层的研究[J]. 金属学报. 1999(06): 654-658.

[22] 刘兴钊,黄秋荣,杜家驹,等. HR-1型奥氏体不锈钢镀Cr2O3及TiN膜复合材料的气相氢渗透研究[J]. 核科学与工程. 1997(03): 281-284.

[23] 山常起,郝嘉琨,陈庆旺,等. 抗等离子体辐照的防氚渗透材料的研究[J]. 核聚变与等离子体物理. 1997(03): 63-66.

[24] 黄秋荣,邓柏权,黄锦华,等. 不锈钢及其镀膜复合材料气相氢渗透研究[J]. 真空科学与技术. 1994(06): 418-425.

[25] Serra E, Glasbrenner H, Perujo A. Hot-dip aluminium deposit as a permeation barrier for MANET steel[J]. Fusion Engeneering and Design. 1998, 41: 149-155.

[26] Serra E, Kelly P J, Ross D K, et al. Alumina sputtered on MANET as an effective deuterium permeation barrier[J]. Journal of Nuclear Materials. 1998, 257(2): 194-198.

[27] Perujo A, Serra E, Kolbe H, et al. Hydrogen permeation rate reduction by post-oxidation of aluminide coatings on DIN 1.4914 martensitic steel (MANET)[J]. Journal of Nuclear Materials. 1996, 233(B): 1102-1106.

[28] 沈嘉年,李凌峰,张玉娟,等. 不锈钢表面包埋渗铝-热氧化处理制备氧化铝膜及其对氢渗透的影响[J]. 原子能科学技术. 2005(S1): 73-78.

[29] 郝嘉琨,山常起,金柱京,等. 316L不锈钢表面Al2O3镀层中氚的扩散渗透行为[J]. 核聚变与等离子体物理. 1996(02): 62-64.

[30] Wang P X, Liu J, Wang Y, et al. Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation[J]. Surface & Coatings Technology. 2000, 128: 99-104.

[31] Krauss W, Konys J, Holstein N, et al. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets[J]. Journal of Nuclear Materials. 2011, 417(1-3): 1233-1236.

[32] Zhang G K, Chen C A, Luo D L, et al. An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece[J]. Fusion Engeneering and Design. 2012, 87(7-8): 1370-1375.

[33] Zhang G, Wang X, Xiong Y, et al. Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of alpha-Al2O3: A density functional theory study[J]. International Journal of Hudrogen Energy. 2013, 38(2): 1157-1165.

[34] Jun F, Min D, Fanya J, et al. Preparation and properties of alumina coatings as tritium permeation barrier by plasma electrolytic oxidation[J]. Rare Metal Materials and Engineering. 2016, 45(2): 315-320.

[35] Hollenberg G W, Simonen E P, Kalinin G, et al. Tritium/hydrogen Barrier Development[J]. Fusion Engineering and Design. 1995, 28: 190-208.

[36] 张桂凯,向鑫,杨飞龙,等. 我国聚变堆结构材料表面阻氚涂层的研究进展[J]. 核化学与放射化学. 2015(05): 310-320.

[37] Singh K, Fernandes A, Paul B, et al. Preparation and investigation of aluminized coating and subsequent heat treatment on 9Cr–1Mo Grade 91 steel[J]. Fusion Engineering and Design. 2014, 89(11): 2534-2544.

[38] Xiang X, Wang X, Zhang G, et al. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review[J]. International Journal of Hydrogen Energy. 2015, 40(9): 3697-3707.

[39] 郭旭侠,资文华,丑修建,等. 热浸镀铝工艺及镀层分析[J]. 昆明理工大学学报(理工版). 2004(02): 19-22.

[40] 孙克宁,孙雪,曹莹,等. 热浸镀铝工艺及水溶液助镀剂的研究[J]. 电镀与环保. 2001(03): 29-32.

[41] 李苏琴. 钢材热浸镀铝新工艺[J]. 热处理. 2001(04): 20-22.

[42] 刘洪福. 面向再制造的超声辅助热浸镀铝技术研究[D]. 山东理工大学, 2013.

[43] 夏原,彭丹阳. 超声波热镀铝技术评述[J]. 金属热处理学报. 2001(04): 25-30.

[44] 钟芳兴. AM355不锈钢机械能助渗铝涂层的制备及组织性能研究[D]. 南昌航空大学, 2015.

[45] 朱望伟,殷铁志,王向东,等. 沉淀硬化不锈钢机械能助渗铝的试验研究[J]. 钢铁钒钛. 2011(02): 33-38.

[46] 朱望伟,王向东,陈小平,等. 沉淀硬化不锈钢机械能助渗铝工艺研究[J]. 热加工工艺. 2011, 40: 192-194.

[47] 頡向旭,王宇. 碳钢渗铝工艺研究进展[J]. 热处理技术与装备. 2010(05): 1-5.

[48] 陈海瑞,彭浩平,苏旭平,等. 热浸镀Galvalume熔池流动与传热的数值模拟[J]. 材料热处理学报. 2015(01): 223-228.

[49] 高峰,郑雯,吴俊森. 提抽过程中镀层厚度的模型推导及验证[J]. 金属制品. 2000(04): 6-10.

[50] 王兴庆,隋永江,吕海波. 铁铝原子在金属间化合物形成中的扩散[J]. 上海大学学报(自然科学版). 1998(06): 74-80.

[51] Zimu S, Jianbo C, Fusheng H. Preparation and acterization of Fe-Al intermetallic layer on the surface of T91 heat-resistant steel[J]. Journal of Nuclear Materials. 2014, 447(1-3): 77-81.

[52] 王畅畅. 钢材表面热浸镀铝技术研究进展[J]. 材料保护. 2016(10): 74-77.

[53] 刘连涛. 钢-铝复合界面组织结构研究[D]. 昆明理工大学, 2008.

[54] Cheng W, Wang C. Characterization of intermetallic layer formation in aluminide/nickel duplex coating on mild steel[J]. Materials Characterization. 2012, 69: 63-70.

[55] Lemmens B, Gonzalez-Garcia Y, Corlu B, et al. Study of the electrochemical behaviour of aluminized steel[J]. Surface & Coatings Technology. 2014, 260: 34-38.

[56] 王友彬,曾建民. 采用EBSD技术分析热浸镀铝层的显微组织[J]. 机械工程材料. 2015(03): 45-49.

[57] Eggeler G, Auer W, Kaesche H. On the influence of silicon on the growth of the alloy layer during hot dip aluminizing[J]. Journal of Materials Science. 1986, 21(9): 3348-3350.

[58] 李安敏,郑良杰,胡武,等. 钢材热浸镀铝的研究进展[J]. 材料导报. 2013(09): 96-99.

[59] Chen X, Huang Q, Yan Z, et al. Preliminary study of HDA coating on CLAM steel followed by high temperature oxidation[J]. Journal of Nuclear Materials. 2013, 442(1-3): S597-S602.

[60] Han S, Li H, Wang S, et al. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier[J]. International Journal of Hydrogen Energy. 2010, 35(7): 2689-2693.

[61] Chang Y, Cheng W, Wang C. Growth and surface morphology of hot-dip Al-Si on 9Cr-1Mo steel[J]. Materials Characterization. 2009, 60(2): 144-149.

[62] Cheng W, Wang C. Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel[J]. Intermetallics. 2011, 19(10): 1455-1460.

[63] 钱卫江,顾文桂. Si对热浸镀Al界面化合物层生长的限制作用[J]. 金属学报. 1994(21): 403-406.

[64] 张伟,郭勤军,文九巴. 稀土在热浸镀铝中的行为和分布研究[J]. 稀土. 2009(05): 50-55.

[65] Frutos E, González-Carrasco J L. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials. 2015, 46: 93-103.

[66] Frutos E, álvarez D, Fernandez L, et al. Effects of bath composition and processing conditions on the microstructure and mechanical properties of coatings developed on 316 LVM by hot dipping in melted AlSi alloys[J]. Journal of Alloys and Compounds. 2014, 617: 646-653.

[67] Dittrich K H, Krysmann W, Kurze P, et al. Structure and properties of ANOF layers[J]. Crystal Research and Technology. 1984, 19(1): 93-99.

[68] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surface & Coatings Technology. 1999, 122(2-3): 73-93.

[69] 张宇,闫康平,王伟,等. 电流密度对不锈钢热浸镀铝层微弧氧化的影响[J]. 电镀与精饰. 2008(02): 1-3.

[70] 张宇,闫康平,王伟,等. 热浸镀铝工艺对不锈钢微弧氧化陶瓷膜厚度的影响[J]. 新技术新工艺. 2007(10): 103-105.

[71] 杨钟时,贾建峰,田军,等. 不锈钢表面Al2O3膜的微弧氧化制备[J]. 无机材料学报. 2004(06): 1446-1450.

[72] 王福会,楼翰一,李美栓,等. 溅射沉积CoCrAl微晶涂层的抗氧化性能及抗氧化机理[J]. 腐蚀科学与防护技术. 1994(01): 7-16.

[73] Jin P, Xu G, Tazawa M, et al. Low temperature deposition of alpha-Al2O3 thin films by sputtering using a Cr2O3 template[J]. Journal of Vacuum Science & Technology A - Vacuum Surfaces and Films. 2002, 20(6): 2134-2136.

[74] Wallin E, Andersson J M, Latternann M, et al. Influence of residual water on magnetron sputter deposited crystalline Al2O3 thin films[J]. Thin Solid Films. 2008, 516(12): 3877-3883.

[75] Eklund P, Sridharan M, Sillassen M, et al. alpha-Cr2O3 template-texture effect on alpha-Al2O3 thin-film growth[J]. Thin Solid Films. 2008, 516(21): 7447-7450.

[76] Maeda T, Yoshimoto M, Ohnishi T, et al. Orientation-defined molecular layer epitaxy of alpha-Al2O3 thin films[J]. Journal of Crystal Growth. 1997, 177(1-2): 95-101.

[77] 朱胜利,张惠斌,江垚,等. 添加Cr合金化FeAl金属间化合物多孔材料的制备及性能[J]. 粉末冶金材料科学与工程. 2016(03): 427-433.

[78] Bahadur A, Mohanty O N. Structural studies of hot dip aluminized coatings on mild-steel[J]. Materials Transactions Jim. 1991, 32(11): 1053-1061.

[79] Glasbrenner H, Stein-Fechner K, Konys J. Scale structure of aluminised Manet steel after HIP treatment[J]. Journal of Nuclear Materials. 2000, 283(B): 1302-1305.

[80] Glasbrenner H, Stein-Fechner K, Konys J. Scale structure of aluminised F82H-mod. steel after HIP treatment[J]. Fusion Engineering and Design. 2000, 51-52: 105-110.

[81] 常华. 316L不锈钢表面氧化铝梯度涂层制备工艺及机理研究[D]. 南京航空航天大学, 2007.

[82] 赵红利,胡毅,胡明志,等. 不锈钢表面热镀铝试验研究[J]. 焊接技术. 2016(07): 54-57.

[83] 陈镐. 热浸镀铝制备不锈钢容器表面铝化物涂层及其渗氘性能[D]. 中国工程物理研究院, 2010.

[84] Bouche K, Barbier F, Coulet A. Intermetallic compound layer growth between solid iron and molten aluminium[J]. Materials Science and Engineering A. 1998, 249(1-2): 167-175.

[85] 冯军,金凡亚,童洪辉,等. 316L不锈钢热浸镀铝的组织及性能分析[J]. 铸造技术. 2015(11): 2654-2656.

[86] 周细枝. 45钢热浸镀铝镀层结构分析[J]. 湖北工业大学学报. 2007(05): 54-56.

[87] Yang K, Feng J, Zhou X, et al. In-situ formed gamma-Al2O3 nanocrystals repaired and toughened Al2O3 coating prepared by plasma spraying[J]. Surface & Coatings Technology. 2012, 206(13): 3082-3087.

馆藏位置:

 TG174 S 2017    

开放日期:

 2017-05-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式