- 无标题文档
查看论文信息

中文题名:

 锁固束口形滑坡天然土拱效应作用机理研究    

姓名:

 张金存    

学号:

 0000207748    

论文语种:

 中文    

学科名称:

 地质资源与地质工程    

公开时间:

 公开    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西南交通大学    

院系:

 地球科学与环境工程学院    

专业:

 地质资源与地质工程    

第一导师姓名:

 程谦恭    

第一导师单位:

 西南交通大学    

完成日期:

 2017-05-01    

答辩日期:

 2017-05-20    

外文题名:

 RESEARCH ON MECHANISM AND EFFECT OF NATURAL SOIL ARCHING ON SPOON-SHAPE LANDSLIDES    

中文关键词:

 束口形滑坡 ; 天然土拱效应 ; 锁固作用 ; 数值模拟 ; FLAC3D    

外文关键词:

 The spoon-shape landslide ; Natural soil arching ; Locking section ; Numerical ; FLAC3D    

中文摘要:

四川地区地处我国西南山区,因具有多山地和丘陵这一地貌特征,受降雨、地震及人为活动等影响常常发生各类地质灾害,其中边坡问题十分突出。在一般性边坡治理工程中,抗滑桩具有施工方便、阻滑能力强等显著优点,在实际工程中被广泛应用,且采用抗滑桩进行坡体支护时,桩间形成的土拱作用对坡体稳定性具有重要影响。对具有锁固束口形特殊地形特征的一类滑坡进行治理时,锁固束口形地形会限制滑坡的滑动,坡体束口段产生的土拱作用可充当部分阻滑力,对滑坡整体稳定性具有巨大影响。本文以锁固束口形滑坡为研究对象,以滑坡中的天然土拱效应作用机理为研究目的,基于弹性理论建立力学概化模型证明束口形滑坡中天然土拱现象的存在;以李子乡束口滑坡为真实算例运用 FLAC3D 模拟研究分析,采用理论研究和数值分析方法对束口形滑坡中天然土拱效应展开探讨分析。主要完成如下工作:
(1)基于束口形滑坡力学概化分析模型推导出束口形一类滑坡中窄口段后部土体任意一点的土拱应力解析表达式通解,证明束口滑坡天然土拱效应的存在。土拱效应的变化规律表明,滑坡束口状地形在一定的开阔程度才会出现明显的土拱现象,在颈缩角 α 介于 20°~40°间具有明显应力集中现象,形成显著土拱效应,一旦开阔程度超过范围,土拱现象会迅速减弱直至消失;
(2)推挤压力 P、摩阻力 q 的增大对束口地形段产生的土拱应力会产生较大的影响,当推挤压力 P 在 200kPa~400kPa,摩阻力 q 不超过 300kPa 时,滑坡中产生的天
然土拱作用可显著提高坡体稳定性;
(3)相比桩-土间土拱作用产生的圆形土拱形状和抛物线土拱形状,束口滑坡中土拱作用产生的土拱形状具有较大不同。随坡体深度及窄口段地形界限的逐渐改变,拱形不断变化调整以适应上部不断变化的应力,土拱形状整体呈现“不规则马蹄形”,是束口滑坡天然土拱一大显著特征;
(4)束口滑坡内部土拱效应的有效作用深度介于 z=69m~z=61m 之间,土拱效力整体呈稳定状态,超过这一范围后土拱效应对坡体稳定性的影响会逐渐减弱。李子乡滑坡中土拱的作用区域为 x 向 80m~140m、y 向 20m~80m 处,这一范围内天然土拱作用对滑坡的稳定性至关重要,在后期束口形一类滑坡灾变防治时可充分利用滑坡自身所形成的土拱作用效力,为工程实践提供指导。基于上述结论,研究成果对束口形滑坡防治具有一定的理论价值和工程应用前景。
 

外文摘要:

All kinds of geological disasters,especially slope failure take place frequently inSichuan Province, located in the southwest of China,due to the geomorphic features of the mountainous and hilly landform as well as the effects of rainfall,earthquake and human
activities. Stable piles have the advantages on convenient construction and valid resistance,thus have been widely used in practical engineering. When stable piles are applied to support slopes,the soil arching occurring between piles has an important influence on the stability ofthe slope. When treating the landslides with spoon-shape topography,the nature soil arching produced by the special topography should be taken ac for it can act as part of resistance force and has great effect on the overall stability of the landslide. In order to study the mechanism and effect of natural soil arching on spoon-shape landslides,first,the generalized mechanical model was established based on elastic theory to prove the existence of natural soil arching in such landslides;then, Lizixiang spoon-shape landslide was taken as an example to conduct numerical simulation by FLAC3D. The main research contents andresults are as follows:
(1)The existence of natural soil arching in spoon-shape landslides was proved by the stress analytical expressions,derived from the mechanical analysis model,of arbitrary point located behind the narrow part of the landslide. The variation of soil arching effect shows that the phenomenon of soil arching only appears under the condition of a certain open degree of the topography. There is significant stress concentration phenomenon when the
necking angle is between 20 to 40degrees, otherwise, the soil arching will quickly weaken even disappeared.
(2)The increase of pushing pressure and frictional resistance would have a great effect on the soil arching occurring at the narrow part of the special topography,and the stability of the landslide would be improved significantly when the pushing pressure is between 200kPa~ 400kPa and the frictional resistance is less than 300kPa.
(3)Compared with the circular and parabolic shape of soil arching between piles,the shape of the nature soil arching in spoon-shape landslide has different features. With the gradual change of the depth of the slope and the boundary of the narrow part,it is adjusted to fit the changing stress. The shape of the nature soil arching is an irregular horseshoe shape, which is one of the most remarkable acteristics of the natural arch in the landslide.
(4)The effective depth of soil arching effect in the landslide is between z=69m and z=61m,where the soil arching is stable. The effect of soil arching on the stability of landslide will decrease gradually when the range of effective depth is exceeded. The
effective area of soil arching in Lizixiang landslide is 80m to 140m in x-direction and 20m to 80m in y-direction,respectively,which is critical to the stability of the landslide. The natural soil arching can be fully utilized in later Landslide prevention. Based on the above
conclusions,the research has important theoretical value and engineering application prospect.
 

分类号:

 P642.22    

总页码:

 93    

参考文献总数:

 80    

参考文献:

[1] Janssen H A.Versuche über Getreidedruck in Silozellen[J].Zeits. d. Vereines deutscher

Ingenieure. 1895,39(35):1045-1049.

[2] 李通林,李俊平,连民杰. 矿山岩石力学[M]. 重庆:重庆大学出版社,2011.

[3] Terzaghi K. Theoretical soil mechanics[M]. New York,NY:John Wiley & Sons,1943.

[4] Finn P. Boundary value problems of mechanics[J]. Journal of the Soil Mechanics and Foundations Division,ASCE. 1963,89(SM5):39-72.

[5] Wang W L,Yen B C. Soil arching in slopes[J]. Journal of Geotechnical Engineering division. 1974,104(GT4):493-496.

[6] Brady B H G,Brown E T. Rock mechanics for underground mining [M]. George Allen and Unwin. 1985:212-213.

[7] Nakai T. Finite element computations for active and passive earth pressure problems of

retaining wall[J]. Soil and Foudations. 1985,25(3):99- 112.

[8] Bosscher P J,Asce A M. Soil arching in sandy slops[J]. Journal of geotechnical

engineering. 1986,112(6):626 -645.

[9] Pan X D,Hudson J A. Plane strain analysis in modelling threedimensional tunnel excavations[J]. Int. J. Rock Mech. Min. Sci. and Geomech.Abstr. 1988,25:331-337.

[10] Pan Y W,Dong J J. Time-dependent tunnel convergenceⅠ-formulation of the model[J].

Int. J. Rock Mech.Min.Sci. and Geomech.Abstr. 1991,28:469-475.

[11] Pan Y W,Dong J J. Time-dependent tunnel convergence Ⅱadvance rate and tunnel support interaction[J]. Int. J. Rock Mech.Min. Sci. and Geomech.Abstr. 1991,28:477-488.

[12] Ono K,Yamada M. Analysis of the arching action in granular mass[J].Geotechnique. 1993,43(01):105-120.

[13] Kovari K. Erroneous concepts behind the New Austrian Tunneling Method[J]. Tunnels

and Tunneling. 1994,11:38-41.

[14] Pieter A Vermeer,Ankana Punlor,Nico Ruse. Arching effects behind a soldier pile wall[J].Computersand Geotechnics,2001,(28):379-396.

[15] Adachi T,Kimura M,Tada S. Analysis on the preventive mechanism of landslide

stabilizing piles[C]//Proc.3rd International Symposium on Numerical Models in Geomechanics.[S.l.]:Elsevier Applied Science,1989:691-698.

[16] Martin G R,Chen C Y. Response of piles due to lateral slope movement [J].Computers

and Structures,2005,(83):588-598.

[17] Jinoh won,K wangho You,Sangseom Jeong,Sooil Kim.Coupled effects in stability anal

-ysis of pile-slope systems[J].Computers and Geoteclmics,2005,32:304-305.

[18] 吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J]. 成都科技大学学报,1995,(02):15-19.

[19] 吕庆,孙红月,尚岳全. 抗滑桩桩后土拱形状及影响因素[J]. 哈尔滨工业大学学报,2001,(04):629-633.

[20] 吕庆,孙红月,尚岳全. 抗滑桩桩后土拱效应的作用机理及发育规律[J]. 水利学报,2010,(04):471-476.

[21] 朱碧堂,温国炫,刘一亮. 基坑开挖和支护中土层拱效应的理论分析[J]. 建筑技术,2002,(02):97-98.

[22] 贾海莉,王成华,李江洪. 关于土拱效应的几个问题[J]. 西南交通大学学报,2003,(04):398-402.

[23] 张建勋,陈福全,简洪钰. 被动桩中土拱效应问题的数值分析[J]. 岩土力学,2004,(02):174-178+184.

[24] 张建华,谢强,张照秀. 抗滑桩结构的土拱效应及其数值模拟[J]. 岩石力学与工程学报,2004,(04):699-703.

[25] 韩爱民,肖军华,梅国雄. 被动桩中土拱效应特征与影响参数研究[J]. 工程地质学报,2006,(04):111-116.

[26] Stewart Miriam E,Filz George M.Influence of Clay Compressibility onGeosynthetic Loads in Bridging Layers for Column2SupportedEmbankments[J]. (GSP131),ASCE,

2005:1-14.

[27] 夏元友,芮瑞. 刚性桩加固软土路基竖向土拱效应的试验分析[J]. 岩土工程学报,2006,(03):327-331.

[28] 叶永峰. 排桩支护结构中的土拱效应[D]. 郑州大学,2006.

[29] 李忠诚,杨敏. 被动受荷桩成拱效应及三维数值分析[J]. 土木工程学报,2006,(03):114-117.

[30] 陈福全,侯永峰,刘毓氚. 考虑桩土侧移的被动桩中土拱效应数值分析[J]. 岩土力学,2007,(07):1333-1337.

[31] 吕涛,齐美苗,彭良泉. 抗滑桩的土拱效应及数值模拟[J]. 人民长江,2007,(01):42-45.

[32] 芮瑞. 刚性桩加固软土地基的路堤荷载传递机理与优化研究[D]. 武汉理工大学,2007.

[33] 宋保强. 抗滑桩支护结构中桩后土拱效应研究与应用[D]. 成都理工大学,2007.

[34] 郑学鑫. 抗滑桩桩间土拱效应及其有限元模拟研究[D]. 河海大学,2007.

[35] 朱伟,钟小春,加瑞. 盾构隧道垂直土压力松动效应的颗粒流模拟[J]. 岩土工程学报,2008,(05):750-754.

[36] 杨明,姚令侃,王广军. 桩间土拱效应离心模型试验及数值模拟研究[J]. 岩土力学,2008,(03):817-822.

[37] 李长冬. 抗滑桩与滑坡体相互作用机理及其优化研究[D]. 中国地质大学,2009.

[38] 吕伟,谭俊. 抗滑桩桩间土拱效应的理论分析[J]. 中国高新技术企业,2009,(05):105-107.

[39] 朱斌,陈若曦,陈云敏,陈仁朋. Trapdoor 位移相关土压力及抗沉陷加筋设计新方法[J]. 岩土工程学报,2009,(12):1895-1901.

[40] 楼晓明,孙晓锋,陈广. 大面积路堤荷载下带承台桩的荷载传递分析[J]. 土木工程学报,2009,(02):98-104.

[41] 张永兴,董捷,黄治云. 合理间距条件悬臂式抗滑桩三维土拱效应试验研究[J]. 岩土工程学报,2009,(12):1874-1881.

[42] 余闯,刘松玉,杜广印,杨昭宇,吴荷君. 桩承式路堤土拱效应的三维数值模拟[J]. 东南大学学报(自然科学版),2009,(01):58-62.

[43] 李邵军,陈静,练操. 边坡桩-土相互作用的土拱力学模型与桩间距问题[J]. 岩土力学,2010,(05):1352-1358.

[44] 范付松. 堆积层滑坡抗滑桩土拱效应数值研究[D]. 中国地质大学,2012.

[45] 李成芳. 预应力锚拉桩三维土拱效应研究[D]. 重庆大学,2012.

[46] 王树州. 抗滑桩支护滑坡中土拱效应机理及临界桩间距研究[D]. 南京大学,2012.

[47] 林治平,刘祚秋,商秋婷. 抗滑桩结构土拱的分拆与联合研究[J]. 岩土力学,2012,(10):3109-3114.

[48] 戴雄辉. 大型滑坡治理抗滑桩与滑坡体相互作用研究[D]. 成都理工大学,2013.

[49] 詹永祥,姚海林,董启朋,王家强,贺东平. 松散体滑坡抗滑桩加固的土拱效应分析[J]. 上海交通大学学报,2013,(09):1372-1376+1389.

[50] 何晖,杨更社,范叩鑫. 微型桩加固堆积层膨胀土滑坡桩间土拱效应试验研究[J]. 西安工业大学学报,2013,(04):297-302.

[51] 上官云龙. 新岩滑坡成因机制及抗滑桩桩土效应研究[D]. 吉林大学,2014.

[52] 董彬彬. 双排抗滑桩土拱效应分析[D]. 重庆大学,2014.

[53] 陈国舟. 筒形挡土结构主动土压力及拱效应研究[D]. 中国矿业大学,2014.

[54] 马慧娟. 抗滑桩土拱效应的理论分析和数值模拟研究[D]. 重庆大学,2015.

[55] 刘攀. 抗滑桩土拱效应与桩间土体滑塌失稳研究[D]. 重庆大学,2015.

[56] 蒋楚生,李庆海,梁瑶,李飞,赵晓彦. 桩间复合结构土拱效应试验研究与应用[J]. 高速铁路技术,2015,(06):17-20.

[57] 林庆涛. 空间土拱效应原理的研究与应用[D]. 北方工业大学,2016.

[58] 杨建民,司航. 考虑土拱效应的圆形抗滑桩滑坡推力的计算[J]. 工业建筑,2016,(01):105-110.

[59] 乔雪锋. 西昌李子乡滑坡稳定性分析及治理方案研究[D]. 成都理工大学,2011.

[60] 曹胜涛. 土拱效应的数值模拟研究[D]. 北京工业大学,2012.

[61] Terzaghi K. Theoretical soil mechanics[M].New York,NY: John Wiley & Sons,1943.

[62] 李忠诚,杨敏. 被动受荷桩成拱效应及三维数值分析[J]. 土木工程学报,2006,(03):114-117.

[63] 魏作安,周永昆,万玲,赵颖,代高飞. 抗滑桩与滑体之间土拱效应的理论分析[J].力学与实践,2010,(03):57-61.

[64] Hassiotis S,Chameau JL,Gunaratne M.Design method for stabilization of slopes with iles.Journal of Geotechnical and Geonivronment engineering,1997,123(04):314-323.

[65] 贾海莉,王成华,李江洪.基于土拱效应的抗滑桩于护臂桩的桩间距分析[J]. 工程地质学报,2004,12(01):98-103.

[66] 王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大桩间距分析[J]. 山地学报,2001,19(16):556-559.

[67] Chien yuan chen. Numerical analysis of slope stabilization concepts piles.[phdthesi

-s].university of southern California,2001,01.

[68] Vermeer P A,pinlor A,ruse N.Arching effects behind a soldier pile wall.computers and geotechnics,2001,28(06)::379-396.

[69] 刘静. 基于桩土共同作用下的抗滑桩的计算与应用研究[D]. 中南大学,2007.

[70] Albert heim. landslides with human lives[M]. naturforschenden gesellschaft in zurich,

1989,(02):21-22.

[71] 王兰生,詹铮,苏道刚等. 新滩滑坡发育特征和起动、滑动及制动机制的初步研究 A[C].见:中国岩石力学与工程学会.中国典型滑坡.北京:科学出版社,1988,211-217.

[72] 地质矿产部编写组.长江三峡工程库岸稳定性研究囚[M].北京:地质出版社,1988.

[73] 程谦恭,张倬元,崔鹏. 平卧“支撑拱”锁固滑坡动力学机理与稳定性判据[J]. 岩石力学与工程学报,2004,(17):2855-2864.

[74] 孔纪名,陈自生. 束口形滑坡的运动特征及其在滑坡灾害预测上的意义[A]. 见:《滑坡研究与防治》编辑委员会.滑坡研究与防治[C].成都:四川科学技术出版社,1996,7(02):25-32.

[75] 李登峰,胡卸文,赵晓彦,岳宗玉. 花岗岩残积土边坡水平拱高竖向变化规律[J]. 西南交通大学学报,2016,(05):1024-1032.

[76] 曾锦秀. 四川泸州岩窝头滑坡形成机制及稳定性评价[D]. 西南交通大学,2014.

[77] 杜小玉. 基于 FLAC~(3D)的关中塬区黄土滑坡稳定性数值模拟[D]. 长安大学,2015.

[78] Koutsabeloulis N C,Griffiths D V. Numerical modeling of the trap door problem[J]. Geotechnique,1989,39(01):77-89.

[79] 陈育民,徐鼎平编著. FLAC/FLAC3D 基础与工程实例(第二版)[M]. 北京:中国水利水电出版社,2013.

[80] 朱碧堂,温国炫,刘一亮. 基坑开挖和支护中土层拱效应的理论分析[J]. 建筑技术,2002,(02):97-98.

馆藏位置:

 P642.22 S 2017    

开放日期:

 2017-05-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式